Modeling the Distribution of the Invasive Alien Cycad Aulacaspis Scale in Africa Under Current and Future Climate Scenarios

Author:

Kanle Satishchandra Nitin12ORCID,Geerts Sjirk1ORCID

Affiliation:

1. Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa

2. South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont, South Africa

Abstract

Abstract The cycad aulacaspis scale, Aulacaspis yasumatsui Takagi (Hemiptera: Coccoidea: Diaspididae), is native to Southeast Asia but an invasive pest of the gymnosperm order Cycadales in many parts of the world. Aulacaspis yasumatsui was recently reported on the cycad genus Encephalartos in South Africa and is currently categorized as a ‘prohibited terrestrial invertebrate’ in the invasive species legislation, National Environmental Management: Biodiversity Act, 2004 (NEM:BA). Encephalartos is endemic to Africa, and 11 species are listed as critically endangered and four species as endangered. Seeing the limited distribution of A. yasumatsui in South Africa and only one unconfirmed record from the Ivory Coast, understanding the potential distribution range is essential for control and management. Here we model the potential distribution of A. yasumatsui under current and future climate scenarios in Africa, with a focus on South Africa. Future climatic scenarios were simulated using a bio-climatic software, CLIMEX. The model indicates that, under the current climatic scenario, all 17 African countries possessing Encephalartos are susceptible to A. yasumatsui establishment. However, under climatic change, the suitability decreases for large parts of Africa. In South Africa, 93% of the winter rainfall areas, and 90% of the temperate, summer rainfall areas are suitable for A. yasumatsui establishment. In this study, we highlight the urgent need for regulation, management, and research on A. yasumatsui in African countries with native cycads.

Funder

South African Department of Environment, Forestry, and Fisheries

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

Reference69 articles.

1. Assessing the consequences of global change for forest disturbance from herbivores and pathogens;Ayres;Sci. Total Environ,2000

2. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores;Bale;Glob. Change Biol,2002

3. Forests and climate change-lessons from insects;Battisti,2008

4. Will climate change promote future invasions?;Bellard;Glob. Chang. Biol,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3