Sharpening the Precision of Pest Management Decisions: Assessing Variability Inherent in Catch Number and Absolute Density Estimates Derived from Pheromone-Baited Traps Monitoring Insects Moving Randomly

Author:

Miller James R1

Affiliation:

1. Professor Emeritus Department of Entomology, Michigan State University, Williamston, MI

Abstract

Abstract During a trapping study interval, each target insect is either caught or not caught. Therefore, the current analysis treats trapping as a binomial process. Data from a binomial calculator, along with computer simulations of random walkers, documented that the inherent variance associated with estimates of absolute population density generated by a single catch number in a pheromone-baited monitoring trap becomes very high when catch probability averaged across the trap’s sampling area falls below 0.02, as is the case for most insect trapping systems operating in the open field. The imprecision associated with interpretations of single catch numbers renders many current pest management decisions risky and unsatisfactory. Here we reinforce how single-trap, multiple-release experiments can and should be used to measure catch probability, plume reach, and trap sampling area. When catch probability lies in the danger zone below 0.02, steps are suggested for how multiple traps might be deployed to raise composite catch probability to a level where estimates of absolute pest density become reliable. Heat transfer is offered as an appropriate conceptual model for the mechanics of trapping. A call is made for a radical rethinking in the designs of insect monitoring traps in light of their significant current deficits highlighted by this study.

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

Reference20 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3