Effects of Temperature on the Development and Fecundity of Atractomorpha Sinensis (Orthoptera: Pyrgomorphidae)

Author:

Li Wen-bo1,Gao Yu1,Cui Juan2,Shi Shu-Sen1

Affiliation:

1. College of Plant Protection, Jilin Agricultural University, Changchun, PR China

2. College of Agriculture, Jilin Agriculture Science and Technology College, Jilin, PR China

Abstract

Abstract Over the recent years, Atractomorpha sinensis I. Bolivar, has emerged as an important agricultural pest in China. However, the biological characteristics of A. sinensis remain largely unknown, which can hinder the prediction of its population dynamics. Thus, understanding the impact of temperature on the developmental period of A. sinensis is crucial to predict its population dynamics. The biological characteristics of A. sinensis were systematically observed at five different temperatures (16, 20, 24, 28, and 32°C) using the age-stage, two-sex life table method. The results demonstrated that the developmental period, preadult time, adult longevity, adult preoviposition period, and total preoviposition period were significantly reduced when the temperature was elevated from 16 to 32°C. The developmental threshold temperatures of egg, nymph, preoviposition period, female adult, male adult, and generation were 9.14, 10.44, 12.53, 10.97, 12.47, and 10.58°C, respectively, with the corresponding effective accumulated temperatures of 452.31, 575.99, 169.58, 528.13, 340.81, and 1447.95 degree-days. With an increase in temperature, the intrinsic rate of increase (r) and finite rate of increase (λ) were increased, while the mean generation time (T) was shortened. The optimal values of net reproductive rate (R0= 73.00 offspring) and fecundity (244.55 eggs) were determined at 24°C. Similarly, the population trend index (I) of A. sinensis was found to be highest at 24°C. Our findings indicate that A. sinensis has the greatest rate of population growth at 24°C, which can provide a scientific basis for predicting the in-field population dynamics of A. sinensis.

Funder

Agriculture Research System of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3