Performance of a Low-Cost Acoustic Insect Detector System with Sitophilus oryzae (Coleoptera: Curculionidae) in Stored Grain and Tribolium castaneum (Coleoptera: Tenebrionidae) in Flour

Author:

Mankin R W1ORCID,Jetter E2,Rohde B3,Yasir M4

Affiliation:

1. United States Department of Agriculture, Agricultural Research Service Center for Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, FL

2. Department of Public Health, University of Florida, Gainesville, FL

3. Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL

4. Department of Entomology, University of Agriculture, Faisalabad, Pakistan

Abstract

Abstract Reduction of postharvest losses is gaining increased priority in warm regions where insect infestation may cause rapid deterioration of staple commodities. Acoustic detection can be used to assess the likelihood of insect infestations in bags of grain, flour, and other commodities that are stored in small holdings in developing countries, enabling rapid targeting of treatments. A portable postharvest insect detection system was developed with the goal to provide low-cost capability to acoustically assess infestations in small-scale storage facilities. Electret microphones input pest insect sounds to a 32-bit microcontroller platform that digitized and stored the signals on a digital memory card transferable to a portable laptop computer. The insect sounds then were analyzed by custom-written software that matched their spectra to those of known pests. Infestations of Sitophilus oryzae (L) in 2.6-kg bags could be detected down to densities of 1.9 adults/kg in grain and Tribolium castaneum (Herbst) down to 3.8 adults/kg in flour in laboratory settings. Also, differences in the rates of sounds per insect in treatments with different numbers ranging from 5 to 50 insects suggested that the sound rates of adults of different species at different population densities may be noticeably affected by aggregation pheromones or other behaviorally active semiochemicals. Further testing is needed but previous experience with acoustic detection systems suggests that the prototype has potential for use in small storage facilities where early detection of infestations is difficult to provide.

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3