Insecticide Resistance, and Its Effects on Bait Performance in Field-Collected German Cockroaches (Blattodea: Ectobiidae) From Taiwan

Author:

Hu I-Hsuan1,Chen Shan-Min1,Lee Chow-Yang2ORCID,Neoh Kok-Boon1

Affiliation:

1. Department of Entomology, National Chung Hsing University, South District, Taichung, Taiwan

2. Department of Entomology, University of California, Riverside, CA

Abstract

Abstract Insecticide resistance in the German cockroach, Blattella germanica (L.), is a significant challenge to the pest management professionals worldwide. We collected 24 field populations of B. germanica from different localities in Taiwan island, reared them for one to two generations, and evaluated them for their resistance to deltamethrin, propoxur, and fipronil using the surface-contact method. Results showed that deltamethrin resistance ratio ranged from 1.5 to 817.5×. Among the strains, TC Supermarket, TC Sanshang Logistics, TC THSR, and TC 1Taichungsteak strains showed very high resistance to deltamethrin, which mortality ranged between 0 and 33% at 7-d post-treatment. On the other hand, resistance to propoxur and fipronil RR were 0.70–7.13× and 1.67–3.72×, respectively. Synergism studies using piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) suggested the major involvement of cytochrome P450 monooxygenase and minor involvement of esterases. However, deltamethrin resistance in two strains (i.e., TC Supermarket and TC THSR) was not affected by both PBO and DEF, indicating that other mechanisms are involved in the resistance, including kdr resistance. Evaluation of the field strains using commercial gel baits containing fipronil, imidacloprid, hydramethylnon, and indoxacarb for up to 7 d resulted in 24.4–100%, 11.3–78.5%, 15.8–75.5%, and 63.3–100% mortality, respectively. We found that high deltamethrin resistance in some strains could affect the performance of fipronil, imidacloprid, and indoxacarb baits, indicating the potential involvement of cytochrome P450 monooxygenase in reducing the effectiveness of the bait toxicants.

Funder

Ministry of Science and Technology

UCR Urban Entomology Endowed Chair Research Fund

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3