Affiliation:
1. Institute of Geophysics, Czech Academy of Sciences, Prague, Czechia
2. Faculty of Science, Charles University, Prague, Czechia
Abstract
SUMMARY
In earthquake swarms, seismic energy is released gradually by many earthquakes without a dominant event, which offers detailed insight into the processes on activated faults. The swarm of May 2018 that occurred in West Bohemia/Vogtland region included more than 4000 earthquakes with ML = 〈0.5, 3.8〉 and its character showed significant changes during the two weeks duration: what started as a pure earthquake swarm ended as a typical main shock–aftershock sequence. Based on precise double-difference relocations, four fault segments differing in strikes and dips were identified with similar dimensions. First, two segments of typical earthquake swarm character took place, and at the end a fault segment hosting a main shock–aftershock sequence was activated. The differences were observable in the earthquakes spatio-temporal evolutions (systematic versus disordered migration of the hypocentres), b-values (>1.3 for the swarm, <1 for the main shock–aftershocks), or the smoothness of seismic moment spatial distribution along the fault plane. Our findings can be interpreted by local variations of fault rheology, differential stress and/or smoothness of the faults surface, possibly related to the crustal fluids circulating along the fault plane and their interplay with the seismic cycle.
Funder
Czech Academy of Sciences
Grant Agency of the Czech Republic
Publisher
Oxford University Press (OUP)
Subject
Geochemistry and Petrology,Geophysics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献