Estimating Correlated Rates of Trait Evolution with Uncertainty

Author:

Caetano D S12,Harmon L J1

Affiliation:

1. Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83843, USA

2. Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA

Abstract

AbstractCorrelated evolution among traits, which can happen due to genetic constraints, ontogeny, and selection, can have an important impact on the trajectory of phenotypic evolution. For example, shifts in the pattern of evolutionary integration may allow the exploration of novel regions of the morphospace by lineages. Here, we use phylogenetic trees to study the pace of evolution of several traits and their pattern of evolutionary correlation across clades and over time. We use regimes mapped to the branches of the phylogeny to test for shifts in evolutionary integration while incorporating the uncertainty related to trait evolution and ancestral regimes with joint estimation of all parameters of the model using Bayesian Markov chain Monte Carlo. We implemented the use of summary statistics to test for regime shifts based on a series of attributes of the model that can be directly relevant to biological hypotheses. In addition, we extend Felsenstein’s pruning algorithm to the case of multivariate Brownian motion models with multiple rate regimes. We performed extensive simulations to explore the performance of the method under a series of scenarios. Finally, we provide two test cases; the evolution of a novel buccal morphology in fishes of the family Centrarchidae and a shift in the trajectory of evolution of traits during the radiation of anole lizards to and from the Caribbean islands. [Anolis; Centrarchidae; comparative methods; evolutionary integration; evolutionary rates; modularity; pruning algorithm.]

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3