Estimating Phylogenies from Shape and Similar Multidimensional Data: Why It Is Not Reliable

Author:

Varón-González Ceferino1,Whelan Simon12,Klingenberg Christian Peter1

Affiliation:

1. School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK

2. Department of Evolutionary Biology, EBC, Uppsala University, Norbyägen 18D, 75236 Uppsala, Sweden

Abstract

Abstract In recent years, there has been controversy whether multidimensional data such as geometric morphometric data or information on gene expression can be used for estimating phylogenies. This study uses simulations of evolution in multidimensional phenotype spaces to address this question and to identify specific factors that are important for answering it. Most of the simulations use phylogenies with four taxa, so that there are just three possible unrooted trees and the effect of different combinations of branch lengths can be studied systematically. In a comparison of methods, squared-change parsimony performed similarly well as maximum likelihood, and both methods outperformed Wagner and Euclidean parsimony, neighbor-joining and UPGMA. Under an evolutionary model of isotropic Brownian motion, phylogeny can be estimated reliably if dimensionality is high, even with relatively unfavorable combinations of branch lengths. By contrast, if there is phenotypic integration such that most variation is concentrated in one or a few dimensions, the reliability of phylogenetic estimates is severely reduced. Evolutionary models with stabilizing selection also produce highly unreliable estimates, which are little better than picking a phylogenetic tree at random. To examine how these results apply to phylogenies with more than four taxa, we conducted further simulations with up to eight taxa, which indicated that the effects of dimensionality and phenotypic integration extend to more than four taxa, and that convergence among internal nodes may produce additional complications specifically for greater numbers of taxa. Overall, the simulations suggest that multidimensional data, under evolutionary models that are plausible for biological data, do not produce reliable estimates of phylogeny. [Brownian motion; gene expression data; geometric morphometrics; morphological integration; squared-change parsimony; phylogeny; shape; stabilizing selection.]

Funder

University of Manchester

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3