OSF-Builder: A New Tool for Constructing and Representing Evolutionary Histories Involving Introgression

Author:

Scholz Guillaume E1,Popescu Andrei-Alin1,Taylor Martin I2,Moulton Vincent1,Huber Katharina T1

Affiliation:

1. School of Computing Sciences

2. School of Biological Sciences, University of East Anglia, Norwich, UK

Abstract

Abstract Introgression is an evolutionary process which provides an important source of innovation for evolution. Although various methods have been used to detect introgression, very few methods are currently available for constructing evolutionary histories involving introgression. In this article, we propose a new method for constructing such evolutionary histories whose starting point is a species forest (consisting of a collection of lineage trees, usually arising as a collection of clades or monophyletic groups in a species tree), and a gene tree for a specific allele of interest, or allele tree for short. Our method is based on representing introgression in terms of a certain “overlay” of the allele tree over the lineage trees, called an overlaid species forest (OSF). OSFs are similar to phylogenetic networks although a key difference is that they typically have multiple roots because each monophyletic group in the species tree has a different point of origin. Employing a new model for introgression, we derive an efficient algorithm for building OSFs called OSF-Builder that is guaranteed to return an optimal OSF in the sense that the number of potential introgression events is minimized. As well as using simulations to assess the performance of OSF-Builder, we illustrate its use on a butterfly data set in which introgression has been previously inferred. The OSF-Builder software is available for download from https://www.uea.ac.uk/computing/software/OSF-Builder.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Is this network proper forest-based?;Information Processing Letters;2025-01

2. Forest-Based Networks;Bulletin of Mathematical Biology;2022-09-15

3. Overlaid species forests;Discrete Applied Mathematics;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3