Affiliation:
1. School of Computer Science, University of Auckland , 9 Symonds Street Level 1 Student Commons, Auckland 1010, New Zealand
Abstract
Abstract
As genomic sequence data become increasingly available, inferring the phylogeny of the species as that of concatenated genomic data can be enticing. However, this approach makes for a biased estimator of branch lengths and substitution rates and an inconsistent estimator of tree topology. Bayesian multispecies coalescent (MSC) methods address these issues. This is achieved by constraining a set of gene trees within a species tree and jointly inferring both under a Bayesian framework. However, this approach comes at the cost of increased computational demand. Here, we introduce StarBeast3—a software package for efficient Bayesian inference under the MSC model via Markov chain Monte Carlo. We gain efficiency by introducing cutting-edge proposal kernels and adaptive operators, and StarBeast3 is particularly efficient when a relaxed clock model is applied. Furthermore, gene-tree inference is parallelized, allowing the software to scale with the size of the problem. We validated our software and benchmarked its performance using three real and two synthetic data sets. Our results indicate that StarBeast3 is up to one-and-a-half orders of magnitude faster than StarBeast2, and therefore more than two orders faster than *BEAST, depending on the data set and on the parameter, and can achieve convergence on large data sets with hundreds of genes. StarBeast3 is open-source and is easy to set up with a friendly graphical user interface. [Adaptive; Bayesian inference; BEAST 2; effective population sizes; high performance; multispecies coalescent; parallelization; phylogenetics.]
Funder
Royal Society of New Zealand
Publisher
Oxford University Press (OUP)
Subject
Genetics,Ecology, Evolution, Behavior and Systematics
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献