Cophylogeny Reconstruction Allowing for Multiple Associations Through Approximate Bayesian Computation

Author:

Sinaimeri Blerina1,Urbini Laura234,Sagot Marie-France234,Matias Catherine567

Affiliation:

1. Libera Università Internazionale degli Studi Sociali Guido Carli, Rome , Department of Business and Management, Viale Romania, 32 - 00197, Rome , Italy

2. ERABLE team, Inria – Institut national de recherche en informatique et en automatique , Lyon, 56 Bd Niels Bohr, 69100 Villeurbanne , France

3. Université de Lyon , F-69000, Lyon , France

4. Laboratoire de Biométrie et Biologie Evolutive (LBBE) , Centre National de la Recherche Scientifique (CNRS), UMR5558, 43 Boulevard du 11 Novembre 1918, 69622 Villurbanne Cedex , France

5. Sorbonne Université , Paris , France

6. Université de Paris Cité , Paris , France

7. Centre National de la Recherche Scientifique , Laboratoire de Probabilités, Statistique et Modélisation, Paris , France

Abstract

Abstract Phylogenetic tree reconciliation is extensively employed for the examination of coevolution between host and symbiont species. An important concern is the requirement for dependable cost values when selecting event-based parsimonious reconciliation. Although certain approaches deduce event probabilities unique to each pair of host and symbiont trees, which can subsequently be converted into cost values, a significant limitation lies in their inability to model the invasion of diverse host species by the same symbiont species (termed as a spread event), which is believed to occur in symbiotic relationships. Invasions lead to the observation of multiple associations between symbionts and their hosts (indicating that a symbiont is no longer exclusive to a single host), which are incompatible with the existing methods of coevolution. Here, we present a method called AmoCoala (an enhanced version of the tool Coala) that provides a more realistic estimation of cophylogeny event probabilities for a given pair of host and symbiont trees, even in the presence of spread events. We expand the classical 4-event coevolutionary model to include 2 additional outcomes, vertical and horizontal spreads, that lead to multiple associations. In the initial step, we estimate the probabilities of spread events using heuristic frequencies. Subsequently, in the second step, we employ an approximate Bayesian computation approach to infer the probabilities of the remaining 4 classical events (cospeciation, duplication, host switch, and loss) based on these values. By incorporating spread events, our reconciliation model enables a more accurate consideration of multiple associations. This improvement enhances the precision of estimated cost sets, paving the way to a more reliable reconciliation of host and symbiont trees. To validate our method, we conducted experiments on synthetic datasets and demonstrated its efficacy using real-world examples. Our results showcase that AmoCoala produces biologically plausible reconciliation scenarios, further emphasizing its effectiveness.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3