Founder events and subsequent genetic bottlenecks underlie karyotype evolution in the Ibero-North African endemic Carex helodes

Author:

Escudero Marcial12ORCID,Arroyo Juan Miguel2,Sánchez-Ramírez Santiago3,Jordano Pedro12

Affiliation:

1. Department of Plant Biology and Ecology, University of Seville , 41012 Seville , Spain

2. Department of Integrative Ecology, Doñana Biological Station, CSIC , 41092 Seville , Spain

3. Department of Ecology and Evolutionary Biology, University of Toronto , M5S 3B2 Toronto, Ontario , Canada

Abstract

Abstract Background and Aims Despite chromosomal evolution being one of the major drivers of diversification in plants, we do not yet have a clear view of how new chromosome rearrangements become fixed within populations, which is a crucial step forward for understanding chromosomal speciation. Methods In this study, we test the role of genetic drift in the establishment of new chromosomal variants in the context of hybrid dysfunction models of chromosomal speciation. We genotyped 178 individuals from seven populations (plus 25 seeds from one population) across the geographical range of Carex helodes (Cyperaceae). We also characterized karyotype geographical patterns of the species across its distribution range. For one of the populations, we performed a detailed study of the fine-scale, local spatial distribution of its individuals and their genotypes and karyotypes. Key Results Synergistically, phylogeographical and karyotypic evidence revealed two main genetic groups: southwestern Iberian Peninsula vs. northwestern African populations; and within Europe our results suggest a west-to-east expansion with signals of genetic bottlenecks. Additionally, we inferred a pattern of descending dysploidy, plausibly as a result of a west-to-east process of post-glacial colonization in Europe. Conclusions Our results give experimental support to the role of geographical isolation, drift and inbreeding in the establishment of new karyotypes, which is key in the speciation models of hybrid dysfunction.

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3