Multiple highly expressed phosphoenolpyruvate carboxylase genes have divergent enzyme kinetic properties in two C4 grasses

Author:

DiMario Robert J1ORCID,Kophs Ashley N1,Apalla Anthony J A1,Schnable James N2,Cousins Asaph B1ORCID

Affiliation:

1. School of Biological Sciences, Washington State University , Pullman, WA 99164 , USA

2. Department of Agronomy and Horticulture, University of Nebraska , Lincoln, NE 68583 , USA

Abstract

Abstract Background and Aims Phosphoenolpyruvate (PEP) carboxylase (PEPC) catalyses the irreversible carboxylation of PEP with bicarbonate to produce oxaloacetate. This reaction powers the carbon-concentrating mechanism (CCM) in plants that perform C4 photosynthesis. This CCM is generally driven by a single PEPC gene product that is highly expressed in the cytosol of mesophyll cells. We found two C4 grasses, Panicum miliaceum and Echinochloa colona, that each have two highly expressed PEPC genes. We characterized the kinetic properties of the two most abundant PEPCs in E. colona and P. miliaceum to better understand how the enzyme’s amino acid structure influences its function. Methods Coding sequences of the two most abundant PEPC proteins in E. colona and P. miliaceum were synthesized by GenScript and were inserted into bacteria expression plasmids. Point mutations resulting in substitutions at conserved amino acid residues (e.g. N-terminal serine and residue 890) were created via site-directed PCR mutagenesis. The kinetic properties of semi-purified plant PEPCs from Escherichia coli were analysed using membrane-inlet mass spectrometry and a spectrophotometric enzyme-coupled reaction. Key Results The two most abundant P. miliaceum PEPCs (PmPPC1 and PmPPC2) have similar sequence identities (>95 %), and as a result had similar kinetic properties. The two most abundant E. colona PEPCs (EcPPC1 and EcPPC2) had identities of ~78 % and had significantly different kinetic properties. The PmPPCs and EcPPCs had different responses to allosteric inhibitors and activators, and substitutions at the conserved N-terminal serine and residue 890 resulted in significantly altered responses to allosteric regulators. Conclusions The two, significantly expressed C4Ppc genes in P. miliaceum were probably the result of genomes combining from two closely related C4Panicum species. We found natural variation in PEPC’s sensitivity to allosteric inhibition that seems to bypass the conserved 890 residue, suggesting alternative evolutionary pathways for increased malate tolerance and other kinetic properties.

Funder

Division of Chemical Sciences, Geosciences, and Biosciences

Office of Basic Energy Sciences

Department of Energy

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3