Epiphytic CAM bromeliads indicate vulnerability of tropical forest communities to climate change

Author:

Males Jamie1,Baksh-Comeau Yasmin2,Jaggernauth Dan2,Ballah Shane2,Paltoo Shahada2,Griffiths Howard1

Affiliation:

1. Department of Plant Sciences, University of Cambridge , Downing Street, Cambridge CB2 3EA , UK

2. National Herbarium of Trinidad and Tobago, University of West Indies St Augustine Campus , Trinidad , Trinidad and Tobago

Abstract

Abstract Background and Scope Vascular epiphytes have a variety of mechanisms to trap and retain water, including crassulacean acid metabolism (CAM). Niche segregation was investigated for epiphytic bromeliads on the tropical Caribbean island of Trinidad, where habitats range from lowland deciduous forests to high-rainfall montane tropical forests, ~1000 m in elevation. Methods Four tank-impounding bromeliad epiphytes in the genus Aechmea (Ae. aquilega, Ae. fendleri, Ae. nudicaulis and Ae. dichlamydea) with CAM were mapped across their distinct geographical and elevational zonations in northern Trinidad and Tobago. Species distribution modelling was used to determine environmental limitations for each species. Anatomical and physiological measurements included leaf succulence traits, gas exchange and CAM activity; hydraulic conductance and vulnerability; stomatal sensitivity and quantum yield responses to nocturnal temperature and long-term water deficits. Key Results A total of 2876 field observations identified the transitions between the lowland Ae. aquilega and montane Ae. fendleri, occurring >500 m a.s.l. at the drier western end of the Northern Mountain Range and at progressively lower elevations towards the wetter, eastern region. Anatomical and physiological sensitivities of gas exchange, CAM activity and water use, and responses to elevated nocturnal temperatures and drought, were markedly different for Ae. fendleri compared with Ae. aquilega or the ubiquitous Ae. nudicaulis. Conclusions The species distribution model highlighted the susceptibility of Ae. fendleri to a changing climate. For each species, physiological and anatomical traits were tailored to environmental tolerances, consistent with specialist or generalist niche preferences. Using Intergovernmental Panel on Climate Change scenarios, we predict that rapid rainfall and temperature changes will lead to the loss of Ae. fendleri and associated lower (and upper) montane forest communities from Trinidad, seriously impacting both biodiversity and critical ecosystem functions here and in other tropical island habitats. Epiphytic bromeliads act as markers for threatened communities, and their physiological tolerances represent key indicators of climate change impacts.

Funder

Natural Environment Research Council

National Herbarium of Trinidad and Tobago

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3