Quantitative evaluation of the drivers of species richness in a Mediterranean ecosystem (Cape, South Africa)

Author:

Cramer Michael D1,Verboom G Anthony1

Affiliation:

1. Department of Biological Sciences, University of Cape Town , Rondebosch, Cape Town , South Africa

Abstract

Abstract Background and Aims Mediterranean ecosystems have a high vascular plant species richness (SR) relative to their surface area. This SR, representing the balance between speciation and extinction, has been attributed to multiple mechanisms that result in both high rates of speciation and/or low rates of extinction. An abiding question is, however, what is special about Mediterranean ecosystems that enables this high SR? Apart from the long-term climatic stability of the region, SR has also been related to resource availability, the many individuals hypothesis, resource spatial heterogeneity, temporal heterogeneity and biotic feedbacks. Methods Spatial patterns of species richness were related to climatic, edaphic and biotic variables and to spatial variability within the Greater Cape Floristic Region (GCFR) of South Africa. Boosted regression tree models were used to explore the strength of relationships between SR and environmental predictors related to each hypothesized mechanism. Key Results Water availability (i.e. precipitation) was a stronger predictor of SR than potential evapotranspiration or temperature. Scarcity of nutrients was also related to SR. There was no indication that SR was related to the density of individuals and only temporal heterogeneity induced by fire was related to SR. Spatial heterogeneities of climatic, edaphic and biotic variables were strongly associated with SR. Biotic interactions remain difficult to assess, although we have some evidence for a putative role in regulating SR. Conclusions While the lack of ecosystem-resetting disturbances (e.g. glaciation) is undoubtedly a key requirement for high species accumulation, predictably, no one explanation holds the key to understanding SR. In the GCFR high SR is the product of a combination of adequate water, nutrient scarcity, spatial and temporal heterogeneity, and possibly biotic feedbacks.

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3