Demystifying the convergent ecological specialization of desiccation-tolerant vascular plants for water deficit

Author:

Bondi Luiz12ORCID,de Paula Luiza F A3ORCID,Rosado Bruno H P2ORCID,Porembski Stefan1ORCID

Affiliation:

1. Department of Botany, University of Rostock , Rostock , Germany

2. Department of Ecology, State University of Rio de Janeiro (UERJ) , Rio de Janeiro , Brazil

3. Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil

Abstract

AbstractBackground and AimsDesiccation-tolerant vascular plants (DT plants) are able to tolerate the desiccation of their vegetative tissues; as a result, two untested paradigms can be found in the literature, despite contradictions to theoretical premises and empirical findings. First, it is widely accepted that DT plants form a convergent group of specialist plants to water deficit conditions. A derived paradigm is that DT plants are placed at the extreme end of stress tolerance. Here, we tested the hypotheses that DT plants (1) are in fact convergent specialists for water deficit conditions and (2) exhibit ecological strategies related to stress tolerance, conservative resource-use and survival.MethodsWe used biogeographical and functional-traits approaches to address the mentioned paradigms and assess the species’ ecological strategies. For this, 27 DT plants were used and compared to 27 phylogenetically related desiccation-sensitive vascular plants (DS plants).Key ResultsWe could not confirm either of the two hypotheses. We found that despite converging in desiccation tolerance, DT plants differ in relation to the conditions in which they occur and the ecological strategies they use to deal with water deficit. We found that some DT plants exhibit advantageous responses for higher growth and resource acquisition, which are suitable responses to cope with more productive conditions or with higher disturbance. We discuss that the ability to tolerate desiccation could compensate for a drought vulnerability promoted by higher investment in growth and bring advantages to deal with quick and pronounced variation of water, rather than to drought solely.ConclusionsDT plants are not only selected by drought as an environmental constraint. The alternative functional designs could promote the diversity of ecological strategies, which preclude their convergence to the same resources and conditions. Thus, DT plants are a heterogeneous group of plants in how they deal with drought, despite their desiccation tolerance ability.

Funder

Deutscher Akademischer Austauschdienst

DAAD

CAPES

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3