Underground trees inhabit varied environmental extremes across the Afrotropics

Author:

Courtenay Anya P12ORCID,Moonlight Peter W23,Toby Pennington R24,Lehmann Caroline E R12

Affiliation:

1. GeoSciences , Crew Building, The King’s Buildings, Edinburgh EH9 3FF , UK

2. Royal Botanic Garden Edinburgh , Edinburgh EH3 5LR , UK

3. Botany Department, School of Natural Sciences, Trinity College Dublin , Dublin 2 , Ireland

4. Geography, University of Exeter , Exeter EX4 4RJ , UK

Abstract

Abstract Background and Aims Geoxyles, a distinctive feature of Afrotropical savannas and grasslands, survive recurrent disturbances by resprouting subshrub branches from large below-ground woody structures. Underground trees are a type of geoxyle that independently evolved within woody genera of at least 40 plant families in Africa. The environmental limits and determinants of underground tree biogeography are poorly understood, with the relative influence of frost and fire debated in particular. We aim to quantify variability in the niche of underground tree species relative to their taller, woody tree/shrub congeners. Methods Using occurrence records of four Afrotropical genera, Parinari (Chrysobalanaceae), Ozoroa (Anacardiaceae), Syzygium (Myrtaceae) and Lannea (Anacardiaceae), and environmental data of nine climate and disturbance variables, the biogeography and niche of underground trees are compared with their open and closed ecosystem congeners. Key Results Along multiple environmental gradients and in a multidimensional environmental space, underground trees inhabit significantly distinct and extreme environments relative to open and closed ecosystem congeners. Niche overlap is low among underground trees and their congeners, and also among underground trees of the four genera. Of the study taxa, Parinari underground trees inhabit hotter, drier and more seasonal environments where herbivory pressure is greatest. Ozoroa underground trees occupy relatively more fire-prone environments, while Syzygium underground trees sustain the highest frost frequency and occur in relatively wetter conditions with seasonal waterlogging. Lannea underground trees are associated with the lowest temperatures, highest precipitation, and varying exposure to disturbance. Conclusions While underground trees exhibit repeated convergent evolution, varied environments shape the ecology and biogeography of this iconic plant functional group. The multiplicity of extreme environments related to fire, frost, herbivory and waterlogging that different underground tree taxa occupy, and the distinctiveness of these environments, should be recognized in the management of African grassy ecosystems.

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Reference99 articles.

1. Raincloud plots: a multi-platform tool for robust data visualization;Allen;Wellcome Open Res,2021

2. Managing the human component of fire regimes: lessons from Africa;Archibald;Philosophical Transactions of the Royal Society B: Biological Sciences,2016

3. Competing consumers: contrasting the patterns and impacts of fire and mammalian herbivory in Africa;Archibald;Philosophical Transactions of the Royal Society B: Biological Sciences,2016

4. Leaf green-up in a semi-arid African savanna -separating tree and grass responses to environmental cues;Archibald;Journal of Vegetation Science,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3