Resistance Status to Deltamethrin, Permethrin, and Temephos Along With Preliminary Resistance Mechanism in Aedes aegypti (Diptera: Culicidae) From Punjab, Pakistan

Author:

Khan Hafiz Azhar Ali1ORCID,Akram Waseem2

Affiliation:

1. Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan

2. Department of Entomology, University of Agriculture, Faisalabad, Pakistan

Abstract

Abstract The use of insecticides such as deltamethrin, permethrin, and temephos has been a primary tool to manage Aedes aegypti (Linnaeus) in Punjab province, Pakistan; however, recent reports of control failure necessitate monitoring insecticide resistance. For this reason, we evaluated 12 field strains of Ae. aegypti from Punjab for resistance against deltamethrin, permethrin, and temephos along with underlying resistance mechanisms. For deltamethrin, high level of resistance was observed in Rawalpindi, Faisalabad, Sheikhupura, Lahore, Pattoki, and Kasur strains (RRLC50 > 10-fold); moderate level of resistance in Sargodha, Gujranwala, and Sialkot strains (RRLC50 = 5- to 10-fold), and low level of resistance in Okara, Multan, and Sahiwal strains (RRLC50 < 5-fold). In the case of permethrin, high level of resistance was found in all the field strains, except the Okara strain that exhibited moderate resistance. For temephos, five field strains, viz. Faisalabad, Rawalpindi, Kasur, Lahore, and Gujranwala, showed high level of resistance; five strains, viz. Sheikhupura, Sialkot, Pattoki, Sahiwal, and Okara, showed moderate resistance, and two strains from Multan and Sargodha showed low resistance to temephos. Synergism bioassays implementing piperonyl butoxide and S,S,S-tributylphosphorotrithioate exhibited a nonsignificant effect on synergizing toxicity of deltamethrin and permethrin in all field strains except the Lahore strain, suggesting the possible role of target-site resistance mechanism. However, both synergists had a significant effect on synergizing toxicity of temephos in all field strains, suggesting the possibility of metabolic-based mechanism of insecticide resistance. In conclusion, the study confirmed the presence of resistance to deltamethrin, permethrin, and temephos in the studied field strains of Ae. aegypti from Punjab, Pakistan.

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Insect Science,General Veterinary,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3