Affiliation:
1. Department of Entomology and Nematology, University of California, Davis, CA
2. Department of Entomology, University of California, Riverside, CA
Abstract
Abstract
Plants use a variety of mechanisms to defend against herbivore damage, each with different consequences for agricultural production. Crops relying on tolerance strategies may need different pest management approaches versus those relying on resistance strategies. Previous work suggested that densities of fork-tailed bush katydids (Scudderia furcata Brunner von Wattenwyl [Orthoptera: Tettigoniidae]) that generated substantial scarring on cultivars of sweet oranges (Citrus sinensis, (L.) Osbeck [Sapindales: Rutaceae]) produced only low levels of scarring on cultivars of Citrus reticulata Blanco mandarins. We used field experiments in representative cultivars of these species to test non-mutually exclusive hypotheses regarding the mechanisms underlying this observation: 1) katydids are averse to feeding on mandarin fruits, 2) damaged mandarin fruits preferentially abscise, 3) damaged mandarin fruit tissue recovers during development, and 4) katydid scars on mandarins have a different morphology that may result in misclassification. We found strong support for the first hypothesis, demonstrating that katydids reject opportunities to feed on C. reticulata fruit. Instead of chewing deep holes in the fruit, as was commonly observed for C. sinensis, the katydids only scratched the surface of the C. reticulata fruits. The hypotheses of preferential abscission of damaged fruits and of recovery of damaged tissue were not supported. The low incidence of damage to the mandarins prevented a comprehensive assessment of the scar morphology; however, at harvest, the superficial cuts in C. reticulata were not easily distinguishable from background damage. This indicates that in contrast to C. sinensis, C. reticulata has substantial natural resistance to fork-tailed bush katydids making them a non-pest in this crop.
Funder
California Department of Pesticide Regulation contracts
University of California Division of Agriculture and Natural Resources competitive
USDA-NIFA
Citrus Research Board
Publisher
Oxford University Press (OUP)
Subject
Insect Science,Ecology,General Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献