Relative Toxicity and Residual Activity of Nanocapsules and Commercial Formulations of Pirimicarb and Pymetrozine Against Myzus persicae (Hemiptera: Aphididae)

Author:

Maroofpour Nariman1,Hejazi Mir Jalil1ORCID,Hamishehkar Hamed2,Iranipour Shahzad1

Affiliation:

1. Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

2. Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

AbstractThe green peach aphid, Myzus persicae (Sulzer), is one of the most common pest species that has the potential to transmit more than 100 plant viruses. Controlling this pest is difficult because it has become resistant to a wide range of insecticides. Nanoformulation has the capacity to reduce the pesticide load in agriculture and thus reduce the risks on human health and the environment. In this study, nanocapsules of pirimicarb and pymetrozine were prepared using nanostructured lipid carriers. The size, morphology, and encapsulation efficiency of nanocapsules were investigated using dynamic light scattering, scanning electron microscopy, and UV-VIS spectrophotometer. Zeta potential studies revealed stability of the nanocapsules of both insecticides. The encapsulation efficiencies were 85 and 81% for pirimicarb and pymetrozine, respectively. The nanocapsules were spherical with sizes of 35.38 and 35.12 nm for pirimicarb and pymetrozine, respectively. The LC50 values for the wettable powder (WP) and nanocapsule of pirimicarb after 48 h were 216.2 and 73.2 mg ai/l; for pymetrozine after 96 h, the values were 40.6 and 14.8 mg ai/l, respectively. Durations of residual activity for WP and nanocapsule formulations of pirimicarb were 7 and 15 d, respectively. The residual activity periods for WP and nanocapsule formulations of pymetrozine were 9 and 17 d, respectively. The results revealed that nanoencapsulation can improve performance allowing for reduced doses and increased duration of insecticidal activity for both of the insecticides tested.

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

Reference47 articles.

1. A method of computing the effectiveness of an insecticide;Abbott;J. Econ. Entomol,1925

2. Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers;Adak;J. Environ. Sci. Health. B,2012

3. Achillea millefolium essential oil and chitosan nanocapsules with enhanced activity against Tetranychus urticae;Ahmadi;J. Pest. Sci,2017

4. Evidence for green peach aphid resistance to organo-phosphorous insecticides;Anthon;J. Econ. Entomol,1955

5. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae;Bass;Insect Biochem. Mol. Biol,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3