Cold season dose rate contributions from gamma, radon, thoron or progeny in legacy mines with high natural background radiation

Author:

Haanes Hallvard1ORCID,Dahlgren Sven234,Rudjord Anne Liv1

Affiliation:

1. Norwegian Radiation and Nuclear Safety Authority , P.O. box 55, 1332 Østerås , Norway

2. Vestfold and Telemark County Council, Fylkeshuset , Svend Foynsgt. 9, 3110 Tønsberg , Norway

3. The Njord Centre , Departments of Geosciences and Physics, , 0313 Oslo , Norway

4. University of Oslo , Departments of Geosciences and Physics, , 0313 Oslo , Norway

Abstract

Abstract In areas with high natural background radiation, underground cavities tend to have high levels of airborne radionuclides. Within mines, occupancy may involve significant exposure to airborne radionuclides like radon (222Rn), thoron (220Rn) and progeny. The Fen carbonatite complex in Norway has legacy mines going through bedrock with significantly elevated levels of uranium (238U) and especially thorium (232Th), and significant levels of their progeny 222Rn and 220Rn. There are also significantly elevated levels of gamma radiation in these mines. These mines are naturally chimney ventilated and release large volumes of air to the outdoors giving a large local outdoor impact. We placed alpha track detectors at several localities within these mines to measure airborne radionuclides and measured gamma radiation of bedrock at each locality. The bedrock within the mines shows levels up to 1900 Bq kg−1 for 238U, 12 000 Bq kg−1 for 232Th and gamma dose rates up to 11 μSv h−1. Maximum levels of airborne radionuclides were 45 000 Bq m−3 for 220Rn and 6900 Bq m−3 for 222Rn. In addition, we measured levels of thoron progeny (TnP). In order to estimate radiation dose contribution, TnP should be assessed rather than 220Rn, but deposition-based detectors may be biased by the airflow of mine-draft. We present dose rate contributions using UNSCEAR dose conversion factors, and correcting for airflow bias, finding a combined cold season dose rate within these mines of 17–24 μSv h−1. Interestingly, fractional dose rate contributions vary from 0.02 to 0.6 for gamma, 0.33 to 0.95 for radon and 0.1 to 0.25 for TnP.

Funder

RadoNorm project

Research Council of Norway

Centre for Environmental Radioactivity

Norwegian Meteorological Institute

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,Radiology, Nuclear Medicine and imaging,General Medicine,Radiation,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3