Postirradiation temperature influences DSB repair and dicentric chromosome formation—potential impact for dicentric chromosome analysis in interlaboratory comparisons

Author:

Beinke Christina1,Port Matthias1,Scherthan Harry1

Affiliation:

1. Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm , Neuherbergstr.11, D-80937 Munich , Germany

Abstract

Abstract The objective was to investigate the influence of different pre-storage temperatures in the dicentric chromosome analysis (DCA) protocol (22°C vs. 37°C) by using γ-H2AX + 53BP1 foci as a marker for deoxyribonucleic acid (DNA) double-strand break (DSB) damage induction and repair and the formation of dicentric chromosomes as a result of mis-repair. Repair of γ-H2AX + 53BP1 DSB foci was absent in samples that were incubated for 2 h at 22°C after exposure of 0.5 and 1.2 Gy. When 0.5- and 1.2-Gy-exposed samples were incubated at 37°C for 2 h, there was an average decline of 31 and 52% of DSB foci, respectively. This indicated that DNA repair occurred. There was a 27% decrease in dicentric chromosome yield at 1.2 Gy and a 15% decrease at 3.5 Gy after post-irradiation incubation for 2 h at 37°C relative to the observed dicentric frequencies at 22°C. Recommended to re-phase: our data suggested that there were more open DSBs after a 2-h incubation at 22°C, which contributed to more mis-repair and dicentric formation from the start of culture. Our findings are corroborated by publications showing that lesion interaction based on enzymatic activity is suppressed below 21°C. As such temperature variations can be a source of variation in DCA during interlaboratory comparison studies, we propose to establish a common guide for the standardisation of pre-culture conditions in cytogenetic dosimetry proficiency testing.

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,Radiology, Nuclear Medicine and imaging,General Medicine,Radiation,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3