Risk assessment from radon in domestic water for the Greek population

Author:

Omirou Michalakis12,Clouvas Alexandros12ORCID,Leontaris Fokion123,Kaissas Ioannis12

Affiliation:

1. Nuclear Technology Laboratory , Department of Electrical and Computer Engineering, , Thessaloniki GR-54124 , Greece

2. Aristotle University of Thessaloniki , Department of Electrical and Computer Engineering, , Thessaloniki GR-54124 , Greece

3. German Aerospace Center (DLR), Institute for the Protection of Terrestrial Infrastructure , Sankt Augustin 53757 , Germany

Abstract

Abstract This study focused on assessing the risk from the exposure to radon contained in domestic water for a significant part (~20%) of the Greek population. Also, the variation of radon in domestic water was monitored from 2017 to 2023 in certain villages that showed relatively high radon levels and relied on boreholes for their water supply. The radon in domestic water activity concentrations measured in the investigated Greek places ranged from lower than the minimum detection limit (2 Bq L−1) levels up to 187 Bq L−1 with an average value of 9.1 Bq L−1. Overall, higher radon in domestic water activity concentrations were observed in places supplied from boreholes located inside granitic and metamorphic rock areas. Only one out of the 487 examined places, which accounts for 0.015% of the examined Greek population, showed an average radon-in-water activity concentration higher than the parametric value of 100 Bq L−1 adopted by Greece following the EURATOM Directive (2013/51/EURATOM). Therefore, radon-in-water does not pose a health concern (risk) for the investigated Greek population. The total (inhalation and ingestion) annual effective doses to adults, corresponding to the measured radon-in-water activity concentrations, ranged from nearly 0 to 1.20 mSv y−1 with an average value of 0.059 mSv y−1, while for children, they ranged from almost 0 to 1.26 mSv y−1 with an average value of 0.061 mSv y−1. Regarding the variation of radon in domestic water monitoring, places supplied with water from one borehole showed no significant fluctuations from their average radon-in-water activity concentration, with standard deviations of ~20% at a coverage factor of k = 1. Even though some places supplied from three to four boreholes showed no significant fluctuations (standard deviation <= 30% at k = 1) from their average radon level, special attention is needed for places supplied from many boreholes when one measurement over the year is to be performed for the annual effective dose assessment. This is because the prevailing during-year borehole combination may not exist on the measurement day, resulting in an underestimated or overestimated dose assessment. Radon removal from domestic water supplies in the Arnea village (due to elevated radon-in-water activity concentrations) did not affect the inhalation risk for the residents of an examined house in Arnea. However, radon removal from the water supply was essential to reduce the ingestion risk for the house occupants. There is a possibility of radiation overexposure (>20 mSv y−1) for the workers in a thermal spa on Ikaria Island, and further investigation needs to be conducted with extended measurement periods.

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,Radiology, Nuclear Medicine and imaging,General Medicine,Radiation,Radiological and Ultrasound Technology

Reference48 articles.

1. Council Directive 2013/51/EURATOM of 22 October 2013 laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption;European Commission;OJEU,2013

2. Laboratoire National Henri Becquerel;Be

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3