A Monte Carlo study on the impact of indirect action on neutron relative biological effectiveness

Author:

Manalad James1ORCID,Montgomery Logan2,Kildea John1ORCID

Affiliation:

1. McGill University Medical Physics Unit, , Montreal, QC H4A 3J1, Canada

2. Kingston Health Sciences Centre Cancer Centre of Southeastern Ontario, , Kingston, ON K7L 5P9, Canada

Abstract

Abstract Recent Monte Carlo studies have linked the energy-dependent risk of neutron-induced stochastic effects to the relative biological effectiveness (RBE) of neutrons in inflicting difficult-to-repair clusters of lesions in nuclear deoxyribonucleic acid (DNA). However, an investigation on the damaging effects of indirect radiation action is missing from such studies. In this work, we extended our group’s existing simulation pipeline by incorporating and validating a model for indirect action. Our updated simulation pipeline was used to study the impact of indirect action and estimate neutron RBE for inflicting clustered lesions in DNA. In our results, although indirect action significantly increased the average yield of DNA damage clusters, our neutron RBE values are lower in magnitude than previous estimates due to model limitations and the greater relative impact of indirect action in lower-linear energy transfer (LET) radiation than in higher-LET radiation.

Funder

Canadian Space Agency’s Flights and Fieldwork for the Advancement of Science and Technology programme

Canada Foundation for Innovation’s John R. Evans Leaders Fund

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,Radiology, Nuclear Medicine and imaging,General Medicine,Radiation,Radiological and Ultrasound Technology

Reference16 articles.

1. ICRP publication 103;International Commission on Radiological Protection;Ann. ICRP,2007

2. Towards the characterization of neutron carcinogenesis through direct action simulations of clustered DNA damage;Montgomery;Phys. Med. Biol.,2021

3. The origin of neutron biological effectiveness as a function of energy;Baiocco;Sci. Rep.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3