STUDIES ON RADIATION SHIELDING PROPERTIES OF NEWLY DEVELOPED HIGH-DENSITY CONCRETE FOR ADVANCED RADIOTHERAPY FACILITIES

Author:

Kaur Amanjot12ORCID,Sahani G3,Mudgal Manish4,Chouhan R K4,Srivastava Avanish Kumar4,Pawaskar Padmaja N1ORCID

Affiliation:

1. Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University) , Kolhapur, Maharashtra, India

2. Department of Radiotherapy, Mahatma Phule Charitable Trust (MPCT) Hospital , Navi Mumbai, Maharashtra, India

3. Radiological Safety Division, Atomic Energy Regulatory Board , Mumbai, Maharashtra, India

4. Centre for Advanced Radiation Shielding and Geopolymeric Materials, Council of Scientific and Industrial Research - Advanced Materials and Processes Research Institute , Bhopal, Madhya Pradesh, India

Abstract

AbstractThe linear attenuation coefficients and tenth-value layers are determined experimentally for the newly developed Cement-based high-density Concrete and Fly-Ash-based Geopolymer high-density Concrete using Red-Mud-based synthetic aggregate made up from industrial waste. Linear attenuation coefficients were determined in narrow and broad beam conditions for five megavoltage X-ray photon beam energies, i.e. 6, 10, 15 MV, and 6 and 10 MV-FFF generated by Varian TrueBeam medical linear accelerator. These materials are found to be more effective in radiation shielding when compared with ordinary concrete and hematite ore-based high-density concrete making it a useful construction material for radiotherapy accelerator vaults. Similar values of linear attenuation coefficients are observed for all the above-mentioned X-ray beam energies when cement is replaced with fly-ash in ordinary concrete, hematite-based high-density concrete and red-mud-based high-density concrete, making it a good eco-friendly alternative of cement and useful for the construction of radiotherapy vaults.

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,Radiology, Nuclear Medicine and imaging,General Medicine,Radiation,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3