Deep TL: progress of a machine learning aided personal dose monitoring system

Author:

Derugin Evelin1,Kröninger Kevin1,Mentzel Florian1,Nackenhorst Olaf1,Walbersloh Jörg2,Weingarten Jens1

Affiliation:

1. TU Dortmund University Department of Physics, , 44227 Dortmund, Germany

2. Personendosimetrie, Materialprüfungsamt Nordrhein-Westfalen , 44287 Dortmund, Germany

Abstract

AbstractPersonal dosemeters using thermoluminescence detectors can provide information about the irradiation event beyond the pure dose estimation, which is valuable for improving radiation protection measures. In the presented study, the glow curves of the novel TL-DOS dosemeters developed by the Materialprüfungsamt NRW in cooperation with the TU Dortmund University are analysed using deep learning approaches to predict the irradiation date of a single-dose irradiation of 10 mGy within a monitoring interval of 41 d. In contrast of previous work, the glow curves are measured using the current routine read-out process by pre-heating the detectors before the read-out. The irradiation dates are predicted with an accuracy of 2–5 d by the deep learning algorithm. Furthermore, the importance of the input features is evaluated using Shapley values to increase the interpretability of the neural network.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,Radiology, Nuclear Medicine and imaging,General Medicine,Radiation,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3