Bridging photosynthesis and crop yield formation with a mechanistic model of whole-plant carbon–nitrogen interaction

Author:

Chang Tian-Gen1,Wei Zhong-Wei2,Shi Zai1,Xiao Yi1ORCID,Zhao Honglong1,Chang Shuo-Qi2,Qu Mingnan1,Song Qingfeng1ORCID,Chen Faming34,Miao Fenfen14,Zhu Xin-Guang1

Affiliation:

1. National Key Laboratory for Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences , 300 Fenglin Road, Shanghai 200032 , China

2. State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center , 736 Yuanda Er Road, Changsha 410125 , China

3. Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences , 320 Yueyang Road, Shanghai 200031 , China

4. University of Chinese Academy of Sciences , 19A Yuquan Road, Beijing 100049 , China

Abstract

Abstract Crop yield is determined by potential harvest organ size, source organ photosynthesis and carbohydrate partitioning. Filling the harvest organ efficiently remains a challenge. Here, we developed a kinetic model of rice grain filling, which scales from the primary biochemical and biophysical processes of photosynthesis to whole-plant carbon and nitrogen dynamics. The model reproduces the rice yield formation process under different environmental and genetic perturbations. In silico screening identified a range of post-anthesis targets—both established and novel—that can be manipulated to enhance rice yield. Remarkably, we pinpointed the stability of grain-filling rate from flowering to harvest as a critical factor for maximizing grain yield. This finding was further validated in two independent super-high-yielding rice cultivars, each yielding approximately 21 t ha−1 of rough rice at 14% moisture content. Furthermore, we revealed that stabilizing the grain-filling rate could lead to a potential yield increase of 30–40% in an elite rice cultivar. Notably, the instantaneous grain-filling rates around 15- and 38-day post-flowering significantly influence grain yield; and we introduced an innovative in situ approach using ear respiratory rates for precise quantification of these rates. We finally derived an equation to predict the maximum dried brown rice yield (Y, t ha−1) of a cultivar based on its potential gross photosynthetic accumulation from flowering to harvest (Apc, t CO2 ha−1): Y = 0.74 × Apc + 1.9. Overall, this work establishes a framework for quantitatively dissecting crop physiology and designing high-yielding ideotypes.

Funder

National Key Research and Development Project

Open Research Fund of the State Key Laboratory of Hybrid Rice

National Natural Science Foundation of China

Chinese Academy of Science

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Agronomy and Crop Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3