Real communities of virtual plants explain biodiversity on just three assumptions

Author:

Hunt Roderick1ORCID,Colasanti Ric L2

Affiliation:

1. Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK

2. Department of Creative Technology, Bournemouth University, Poole, Dorset BH12 5BB, UK

Abstract

Abstract To illuminate mechanisms supporting diversity in plant communities, we construct 2D cellular automata and ‘grow’ virtual plants in real experiments. The plants are 19 different, fully validated functional types drawn from universal adaptive strategy theory. The scale of approach is far beyond that of even the most ambitious investigations in the physical world. By simulating 496 billion plant–environment interactions, we succeed in creating conditions that sustain high diversity realistically and indefinitely. Our simulations manipulate the levels of, and degree of heterogeneity in the supply of, resources, external disturbances and invading propagules. We fail to reproduce this outcome when we adopt the assumptions of unified neutral theory. The 19 functional types in our experiments respond in complete accordance with universal adaptive strategy theory. We find that spatial heterogeneity is a strong contributor to long-term diversity, but temporal heterogeneity is less so. The strongest support of all comes when an incursion of propagules is simulated. We enter caveats and suggest further directions for working with cellular automata in plant science. We conclude that although (i) the differentiation of plant life into distinct functional types, (ii) the presence of environmental heterogeneity and (iii) the opportunity for invasion by propagules can all individually promote plant biodiversity, all three appear to be necessary simultaneously for its long-term maintenance. Though further, and possibly more complex, sets of processes could additionally be involved, we consider it unlikely that any set of conditions more minimal than those described here would be sufficient to deliver the same outcome.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Agronomy and Crop Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3