L-GrassF: a functional–structural and phenological model of Lolium perenne integrating plant morphogenesis and reproductive development

Author:

Rouet Simon123ORCID,Durand Jean-Louis1,Leclercq Denis4,Bernicot Marie-Hélène5,Combes Didier1ORCID,Escobar-Gutiérrez Abraham1ORCID,Barillot Romain1ORCID

Affiliation:

1. INRAE, URP3F , 86600 Lusignan , France

2. CIRAD, UPR GECO , F-97130 Capesterre-Belle-Eau, Guadeloupe , France

3. GECO, Univ. Montpellier, CIRAD , 34000 Montpellier , France

4. GEVES , 86600 Lusignan , France

5. GEVES , 21100 Bertenières , France

Abstract

Abstract In the context of climate change and agrosystem complexification, process-based models of the reproductive phenology of perennial grasses are essential to optimize the agronomic and ecologic services provided by grasslands. We present a functional–structural model called L-GrassF, which integrates the vegetative and reproductive development of individual Lolium perenne plants. The vegetative development in L-GrassF was adapted from a previous model of perennial ryegrass where leaf elongation and tillering dynamics partially result from self-regulated processes. Significant improvements have been made to this vegetative module in order to deal with the whole growing cycle during which plants are exposed to contrasting temperatures. The reproductive module is a new functionality describing the floral induction of the individual tiller from daily temperature and photoperiod as well as its phenological state. From the interactions between the vegetative and reproductive developments, L-GrassF simulates the dynamics of plant architecture, the floral transition and heading date (HD) at tiller level. A sensitivity analysis was performed on L-GrassF and showed that parameters controlling the kinetics of leaf elongation and leaf appearance rate have a significant impact on HD. After calibration, L-GrassF was able to simulate the HD on seven L. perenne cultivars grown in a broad range of environmental conditions, as provided by an independent data set. We conclude that L-GrassF is a significant step towards better prediction of grassland phenology in contrasted conditions.

Funder

Region Nouvelle-Aquitaine

INRAe

University of Montpellier

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Agronomy and Crop Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3