CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern Cone

Author:

Severini Alan D1ORCID,Álvarez-Prado Santiago23,Otegui María E341ORCID,Kavanová Monika5,Vega Claudia R C6,Zuil Sebastián7,Ceretta Sergio5,Acreche Martín38,Amarilla Fidencia9,Cicchino Mariano10,Fernández-Long María E4,Crespo Aníbal4,Serrago Román34,Miralles Daniel J34

Affiliation:

1. Manejo de cultivos, Departamento de Producción Vegetal, INTA, Centro Regional Buenos Aires Norte, Estación Experimental Agropecuaria Pergamino , Ruta 32 km 4.5, 2700 Pergamino, Buenos Aires , Argentina

2. Cátedra de Sistemas de Cultivos Extensivos—GIMUCE, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario , Campo Experimental Villarino S/N, S21125ZAA, Zavalla, Santa Fe , Argentina

3. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET ), Argentina

4. Facultad de Agronomía, Universidad de Buenos Aires , Av. San Martín 4453, C1417DSE , Argentina

5. Programa de Investigación en Cultivos de Secano, INIA La Estanzuela , Ruta 50 km 11, 70006 Colonia , Uruguay

6. Manejo de cultivos, Departamento de Producción Vegetal, INTA, Centro Regional Córdoba, Estación Experimental Agropecuaria Manfredi , Ruta 9 km 636, 5988 Manfredi, Córdoba , Argentina

7. Manejo de cultivos, Departamento de Producción Vegetal, INTA, Centro Regional Santa Fe, Estación Experimental Agropecuaria Rafaela , Ruta 34 km 227, 2300 Rafaela, Santa Fe , Argentina

8. Manejo de cultivos, Departamento de Producción Vegetal, INTA, Centro Regional Salta Jujuy, Estación Experimental Agropecuaria Salta , Ruta 68 km 172, 4403 Salta , Argentina

9. Centro de Investigación Capitán Miranda, Instituto Paraguayo de Tecnología Agraria , Ruta VI km 17, 6310 Capitán Miranda, Itapúa , Paraguay

10. Manejo de cultivos, Departamento de Producción Vegetal, INTA, Centro Regional Buenos Aires Sur, Estación Experimental Cuenca del Salado , Avda. Belgrano 416, 7203 Rauch, Buenos Aires , Argentina

Abstract

Abstract Abstract. Accurate prediction of phenology is the most critical aspect for the development of models aimed at estimating seed yield, particularly in species that exhibit variable sensitivity to environmental factors throughout the cycle and among genotypes. With this purpose, we evaluated the phenology of 34 soybean varieties in field experiments located in Argentina, Uruguay and Paraguay. Experiments covered a broad range of maturity group (MG)s (2.2–6.8), sowing dates (SDs) (from spring to summer) and latitude range (24.9–35.6 °S), thus ensuring a wide range of thermo-photoperiodic conditions during the growing season. Based on the observed data, daily time-step models were developed and tested, first for each genotype, and then across MGs. We identified base temperatures specific for different developmental phases and an extra parameter for calculating the photoperiod effect after the R1 stage (flowering). Also, an optimum photoperiod length for each MG was found. Model selection showed that the determinants of phenology across MGs were mainly affecting the duration of vegetative and early reproductive phases. Even so, early phases of development were better predicted than later ones, particularly in locations with cool growing seasons, where the model tended to overestimate their duration. In summary, we have constructed a soybean phenology model that simulates phenology accurately across various geographic locations and sowing dates. The model’s process-based approach has resulted in root mean square errors ranging from 5.8 to 9.5 days for different developmental stages. The final model was made available at http://cronosoja.agro.uba.ar.

Funder

PROCISUR

Publisher

Oxford University Press (OUP)

Reference69 articles.

1. A methodology and an optimization tool to calibrate phenology of short-day species included in the APSIM PLANT model: application to soybean;Archontoulis;Environmental Modelling & Software,2014

2. Fitting linear mixed-effects models using lme4;Bates;Journal of Statistical Software,2015

3. Improving soybean cultivars for adaptation to climate change and climate variability;Boote,2011

4. Genetic coefficients in the CROPGRO–soybean model;Boote;Agronomy Journal,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3