Carbon storage in plants: a buffer for temporal light and temperature fluctuations

Author:

Zepeda Ana Cristina1ORCID,Heuvelink Ep1,Marcelis Leo F M1ORCID

Affiliation:

1. Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University , PO Box 16, 6700 AA Wageningen , The Netherlands

Abstract

Abstract Carbon (C) storage allows a plant to support growth whenever there is a temporal asynchrony between supply (source strength) and demand of carbon (sink strength). This asynchrony is strongly influenced by changes in light and temperature. In most crop models, C storage is included as a passive process that occurs whenever there is an excess of C from photosynthesis compared with the demand of C for metabolism. However, there are numerous studies that challenged this concept, and provided experimental evidence that C storage is an active process that allows buffering of environmental fluctuations and supports long-term plant growth. We propose that an active C pool needs to be included in simulation models for a better understanding of plant growth patterns under fluctuating environment. Specifically, we propose that the two main mechanisms actively regulating C storage in plants are the partitioning of assimilates between soluble sugars and starch and the degradation and remobilization of storage compounds. The insights gained here are important to optimize crop performance under fluctuating conditions and thus for developing more resource-efficient crop production systems.

Funder

Netherlands Organization for Scientific Research

Glastuinbouw, AgroEnergy, Blue-Radix, B-Mex, LetsGrow.com, Delphy and WUR Greenhouse Horticulture

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Agronomy and Crop Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3