Entomopathogenic pseudomonads can share an insect host with entomopathogenic nematodes and their mutualistic bacteria

Author:

Zwyssig Maria12,Spescha Anna12,Patt Tabea12,Belosevic Adrian12,Machado Ricardo A R34,Regaiolo Alice5,Keel Christoph6,Maurhofer Monika12

Affiliation:

1. Plant Pathology , Institute of Integrative Biology, , CH-8092 Zurich , Switzerland

2. Swiss Federal Institute of Technology (ETH) Zurich , Institute of Integrative Biology, , CH-8092 Zurich , Switzerland

3. Experimental Biology Research Group , Institute of Biology, , CH-2000 Neuchatel , Switzerland

4. University of Neuchatel , Institute of Biology, , CH-2000 Neuchatel , Switzerland

5. Johannes-Gutenberg-University Mainz, Institute of Molecular Physiology, Microbiology and Biotechnology , 55128 Mainz , Germany

6. Department of Fundamental Microbiology, University of Lausanne , CH-1015 Lausanne , Switzerland

Abstract

Abstract A promising strategy to overcome limitations in biological control of insect pests is the combined application of entomopathogenic pseudomonads (EPPs) and nematodes (EPNs) associated with mutualistic bacteria (NABs). Yet, little is known about interspecies interactions such as competition, coexistence, or even cooperation between these entomopathogens when they infect the same insect host. We investigated the dynamics of bacteria–bacteria interactions between the EPP Pseudomonas protegens CHA0 and the NAB Xenorhabdus bovienii SM5 isolated from the EPN Steinernema feltiae RS5. Bacterial populations were assessed over time in experimental systems of increasing complexity. In vitro, SM5 was outcompeted when CHA0 reached a certain cell density, resulting in the collapse of the SM5 population. In contrast, both bacteria were able to coexist upon haemolymph-injection into Galleria mellonella larvae, as found for three further EPP-NAB combinations. Finally, both bacteria were administered by natural infection routes i.e. orally for CHA0 and nematode-vectored for SM5 resulting in the addition of RS5 to the system. This did not alter bacterial coexistence nor did the presence of the EPP affect nematode reproductive success or progeny virulence. CHA0 benefited from RS5, probably by exploiting access routes formed by the nematodes penetrating the larval gut epithelium. Our results indicate that EPPs are able to share an insect host with EPNs and their mutualistic bacteria without major negative effects on the reproduction of any of the three entomopathogens or the fitness of the nematodes. This suggests that their combination is a promising strategy for biological insect pest control.

Funder

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3