Mechanisms and implications of bacterial–fungal competition for soil resources

Author:

Wang Chaoqun1234,Kuzyakov Yakov56

Affiliation:

1. National Key Laboratory of Wheat Improvement , College of Agronomy, , Tai'an 271018, Shandong , China

2. Shandong Agricultural University , College of Agronomy, , Tai'an 271018, Shandong , China

3. Biogeochemistry of Agroecosystems, University of Göttingen , Göttingen 37077 , Germany

4. Faculty of Land and Food Systems, The University of British Columbia , Vancouver V6T1Z4 , Canada

5. National Key Laboratory of Wheat Improvement , College of Agronomy, Shandong Agricultural University , Tai'an 271018, Shandong , China

6. Department of Soil Science of Temperate Ecosystems, University of Göttingen , Göttingen 37077 , Germany

Abstract

Abstract Elucidating complex interactions between bacteria and fungi that determine microbial community structure, composition, and functions in soil, as well as regulate carbon (C) and nutrient fluxes, is crucial to understand biogeochemical cycles. Among the various interactions, competition for resources is the main factor determining the adaptation and niche differentiation between these two big microbial groups in soil. This is because C and energy limitations for microbial growth are a rule rather than an exception. Here, we review the C and energy demands of bacteria and fungi—the two major kingdoms in soil—the mechanisms of their competition for these and other resources, leading to niche differentiation, and the global change impacts on this competition. The normalized microbial utilization preference showed that bacteria are 1.4–5 times more efficient in the uptake of simple organic compounds as substrates, whereas fungi are 1.1–4.1 times more effective in utilizing complex compounds. Accordingly, bacteria strongly outcompete fungi for simple substrates, while fungi take advantage of complex compounds. Bacteria also compete with fungi for the products released during the degradation of complex substrates. Based on these specifics, we differentiated spatial, temporal, and chemical niches for these two groups in soil. The competition will increase under the main five global changes including elevated CO2, N deposition, soil acidification, global warming, and drought. Elevated CO2, N deposition, and warming increase bacterial dominance, whereas soil acidification and drought increase fungal competitiveness.

Funder

Shandong Provincial ``811'' Project of First-class Discipline Construction

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3