Glycoengineering of HEK293 cells to produce high-mannose-type N-glycan structures

Author:

Ren Wei-Wei1,Jin Ze-Cheng1,Dong Weijie2,Kitajima Toshihiko1,Gao Xiao-Dong1,Fujita Morihisa1

Affiliation:

1. Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China

2. College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China

Abstract

Abstract Therapeutic proteins are a developing part of the modern biopharmaceutical industry, providing novel therapies to intractable diseases including cancers and autoimmune diseases. The human embryonic kidney 293 (HEK293) cell line has been widely used to produce recombinant proteins in both basic science and industry. The heterogeneity of glycan structures is one of the most challenging issues in the production of therapeutic proteins. Previously, we knocked out genes encoding α1,2-mannosidase-Is, MAN1A1, MAN1A2 and MAN1B1, in HEK293 cells, establishing a triple-knockout (T-KO) cell line, which produced recombinant protein with mainly high-mannose-type N-glycans. Here, we further knocked out MAN1C1 and MGAT1 encoding another Golgi α1,2-mannosidase-I and N-acetylglucosaminyltransferase-I, respectively, based on the T-KO cells. Two recombinant proteins, lysosomal acid lipase (LIPA) and immunoglobulin G1 (IgG1), were expressed in the quadruple-KO (QD-KO) and quintuple-KO (QT-KO) cell lines. Glycan structural analysis revealed that all the hybrid-type and complex-type N-glycans were eliminated, and only the high-mannose-type N-glycans were detected among the recombinant proteins prepared from the QD-KO and QT-KO cells. Overexpression of the oncogenes MYC and MYCN recovered the slow growth in QD-KO and QT-KO without changing the glycan structures. Our results suggest that these cell lines could be suitable platforms to produce homogeneous therapeutic proteins.

Funder

National Natural Science Foundation of China

Young Thousand Program

Program of Introducing Talents of Discipline to Universities

Light Industry Technology and Engineering

Top-notch Academic Programs Project of Jiangsu Higher Education Institutions

International Joint Research Laboratory for Investigation of Glycoprotein Biosynthesis at Jiangnan University

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3