Design of Discrete Choice Experiments

Author:

Street Deborah J.,Viney Rosalie

Abstract

Discrete choice experiments are a popular stated preference tool in health economics and have been used to address policy questions, establish consumer preferences for health and healthcare, and value health states, among other applications. They are particularly useful when revealed preference data are not available. Most commonly in choice experiments respondents are presented with a situation in which a choice must be made and with a a set of possible options. The options are described by a number of attributes, each of which takes a particular level for each option. The set of possible options is called a “choice set,” and a set of choice sets comprises the choice experiment. The attributes and levels are chosen by the analyst to allow modeling of the underlying preferences of respondents. Respondents are assumed to make utility-maximizing decisions, and the goal of the choice experiment is to estimate how the attribute levels affect the utility of the individual. Utility is assumed to have a systematic component (related to the attributes and levels) and a random component (which may relate to unobserved determinants of utility, individual characteristics or random variation in choices), and an assumption must be made about the distribution of the random component. The structure of the set of choice sets, from the universe of possible choice sets represented by the attributes and levels, that is shown to respondents determines which models can be fitted to the observed choice data and how accurately the effect of the attribute levels can be estimated. Important structural issues include the number of options in each choice set and whether or not options in the same choice set have common attribute levels. Two broad approaches to constructing the set of choice sets that make up a DCE exist—theoretical and algorithmic—and no consensus exists about which approach consistently delivers better designs, although simulation studies and in-field comparisons of designs constructed by both approaches exist.

Publisher

Oxford University Press

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3