Sinkhole Hazards

Author:

Gutiérrez Francisco

Abstract

Sinkholes or dolines are closed depressions characteristic of terrains underlain by soluble rocks (carbonates and/or evaporites). They may be related to the differential dissolutional lowering of the ground surface (solution sinkholes) or to subsidence induced by subsurface karstification (subsidence sinkholes). Three main subsidence mechanisms may operate individually or in combination: collapse, sagging, and suffosion. Subsidence sinkholes may cause severe damage to human built structures, and the occurrence of catastrophic collapse sinkholes may lead to the loss of human life. Dissolution and subsidence processes involved in the development of subsidence sinkholes are controlled by a wide range of natural and anthropogenic factors. Recent literature reviews reveal that the vast majority of the damaging sinkholes are induced by human activities (e.g., water table decline, water input to the ground). The main steps in sinkhole hazard and risk assessment include: (a) construction of comprehensive sinkhole inventories and detailed sinkhole characterization; (b) development of independently tested sinkhole susceptibility and hazard models, preferably incorporating magnitude and frequency relationships; (c) assessing risk combining hazard and vulnerability data. Sinkhole risk models may be used as the basis to perform cost-benefit analyses that allow the cost-effectiveness of different mitigation strategies to be estimated. Three main concepts may be applied to reduce sinkhole risk: (a) avoiding sinkholes and sinkhole-prone areas (preventive planning); (b) diminishing the activity of dissolution and/or subsidence processes (hazard reduction); (c) incorporating special designs in the structures (vulnerability reduction). Although our capabilities to investigate sinkhole hazards and reduce the associated risks will continue to increase in the near future, the damage related to sinkholes will also increase, largely due to the adverse changes caused by human activities on the karst environments and the ineffective knowledge transfer between scientists, technicians, and decision-makers. This article presents the processes and factors involved in sinkhole development and reviews the main approaches used to assess and manage sinkhole hazards and risks.

Publisher

Oxford University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3