Deep learning application to automated classification of recommendations made by hospital pharmacists during medication prescription review

Author:

Alkanj Ahmad1,Godet Julien2,Johns Erin3,Gourieux Bénédicte4,Michel Bruno4

Affiliation:

1. Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire UR7296, Département Universitaire de Pharmacologie, Addictologie, Toxicologie et Thérapeutique, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg , Strasbourg , France

2. ICube-IMAGeS, UMR 7357, Université de Strasbourg, Strasbourg, and Groupe Méthodes Recherche Clinique, Pôle de Santé Publique, Hôpitaux Universitaires de Strasbourg , Strasbourg , France

3. Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire UR7296, Département Universitaire de Pharmacologie, Addictologie, Toxicologie et Thérapeutique, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, Strasbourg, and ICube-IMAGeS, UMR 7357, Université de Strasbourg , Strasbourg , France

4. Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire UR7296, Département Universitaire de Pharmacologie, Addictologie, Toxicologie et Thérapeutique, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, Strasbourg, and Service de Pharmacie, Hôpitaux Universitaires de Strasbourg , Strasbourg , France

Abstract

Abstract Purpose Recommendations to improve therapeutics are proposals made by pharmacists during the prescription review process to address suboptimal use of medicines. Recommendations are generated daily as text documents but are rarely reused beyond their primary use to alert prescribers and caregivers. If recommendation data were easier to summarize, they could be used retrospectively to improve safeguards for better prescribing. The objective of this work was to train a deep learning algorithm for automated recommendation classification to valorize the large amount of recommendation data. Methods The study was conducted in a French university hospital, at which recommendation data were collected throughout 2017. Data from the first 6 months of 2017 were labeled by 2 pharmacists who assigned recommendations to 1 of the 29 possible classes of the French Society of Clinical Pharmacy classification. A deep neural network classifier was trained to predict the class of recommendations. Results In total, 27,699 labeled recommendations from the first half of 2017 were used to train and evaluate a classifier. The prediction accuracy calculated on a validation dataset was 78.0%. We also predicted classes for unlabeled recommendations collected during the second half of 2017. Of the 4,460 predictions reviewed, 67 required correction. When these additional labeled data were concatenated with the original dataset and the neural network was retrained, accuracy reached 81.0%. Conclusion To facilitate analysis of recommendations, we have implemented an automated classification system using deep learning that achieves respectable performance. This tool can help to retrospectively highlight the clinical significance of daily medication reviews performed by hospital clinical pharmacists.

Publisher

Oxford University Press (OUP)

Reference33 articles.

1. Medication reviews;Janknegt;Eur J Hosp Pharm,2015

2. Medication review in hospitalised patients to reduce morbidity and mortality;Christensen;Cochrane Database Syst Rev,2016

3. Effectiveness of medication review: a systematic review and meta-analysis of randomized controlled trials;Huiskes;BMC Fam Pract,2017

4. Medication errors recovered by emergency department pharmacists;Rothschild;Ann Emerg Med,2010

5. Drug-related problems in hospitals: a review of the recent literature;Krähenbühl-Melcher;Drug Saf,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3