Stability of 1-unit/mL insulin aspart solution in cyclic olefin copolymer vials and polypropylene syringes

Author:

Henry Heloise1,Gilliot Sixtine1,Genay Stephanie1,Barthelemy Christine1,Decaudin Bertrand1,Odou Pascal1

Affiliation:

1. Groupe de Recherche sur les formes Injectables et les Technologies Associées (GRITA), Centre Hospitalier Universitaire de Lille, ULR 7365, Lille, France

Abstract

Abstract Disclaimer In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. Purpose This study evaluated the stability of diluted insulin aspart solutions (containing insulin aspart and preservatives) at their most commonly used concentration in intensive care units (1 unit/mL), in 2 container types: cyclic olefin copolymer (COC) vials and polypropylene (PP) syringes. Methods Insulin aspart solution (1 unit/mL, diluted in 0.9% sodium chloride injection) was stored for 365 days in COC vials with gray stoppers and PP syringes at refrigerated (5±3°C) and ambient temperatures (25°C ± 2°C at 60% ± 5% relative humidity and protected from light). Chemical testing was conducted monthly using a validated high-performance liquid chromatography method (quantification of insulin aspart, phenol, and metacresol). Physical stability was evaluated monthly via pH measurements, visible and subvisible particle counts, and osmolality measurements. Sterility testing was also performed to validate the sterile preparation process and the maintenance of sterility throughout the study. Results The limit of stability was set at 90% of the initial concentrations of insulin aspart, phenol, and metacresol. The physicochemical stability of 1-unit/mL insulin solutions stored refrigerated and protected from light, was unchanged in COC vials for the 365-day period and for 1 month in PP syringes. At ambient temperature, subvisible particulate contamination as well as the chemical stability of insulin and metacresol were acceptable for only 1 month’s storage in PP syringes, while insulin chemical stability was maintained for only 3 months’ storage in COC vials. Conclusion According to our results, it is not recommended to administer 1-unit/mL pharmacy-diluted insulin solutions after 3 months’ storage in COC vials at ambient temperature or after 1 month in PP syringes at ambient temperature. The findings support storage of 1-unit/mL insulin aspart solution in COC vials at refrigerated temperature as the best option over the long term. Sterility was maintained in every condition. Both sterility and physicochemical stability are essential to authorize the administration of a parenteral insulin solution.

Publisher

Oxford University Press (OUP)

Subject

Health Policy,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3