Radiomics-Based Analysis of Intestinal Ultrasound Images for Inflammatory Bowel Disease: A Feasibility Study

Author:

Gu Phillip1ORCID,Chang Jui-Hsuan2,Carter Dan3ORCID,McGovern Dermot P B1,Moore Jason2,Wang Paul2,Huang Xiuzhen2

Affiliation:

1. F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center , Los Angeles, CA , USA

2. Department of Computational Biomedicine, Cedars-Sinai Medical Center , Los Angeles, CA , USA

3. Department of Gastroenterology, Sheba Medical Center , Tel Aviv , Israel

Abstract

Abstract Background The increasing adoption of intestinal ultrasound (IUS) for monitoring inflammatory bowel diseases (IBD) by IBD providers has uncovered new challenges regarding standardized image interpretation and limitations as a research tool. Artificial intelligence approaches can help address these challenges. We aim to determine the feasibility of radiomic analysis of IUS images and to determine if a radiomics-based classification model can accurately differentiate between normal and abnormal IUS images. We will also compare the radiomic-based model’s performance to a convolutional neural network (CNN)-based classification model to understand which method is more effective for extracting meaningful information from IUS images. Methods Retrospectively analyzing IUS images obtained during routine outpatient visits, we developed and tested radiomic-based and CNN-based models to distinguish between normal and abnormal images, with abnormal images defined as bowel wall thickness > 3 mm or bowel hyperemia with modified Limberg score ≥ 1 (both are surrogate markers for inflammation). Model performances were measured by area under the receiver operator curve (AUC). Results For this feasibility study, 125 images (33% abnormal) were analyzed. A radiomic-based model using XG boost yielded the best classifier model with average test AUC 0.98%, 93.8% sensitivity, 93.8% specificity, and 93.7% accuracy. The CNN-based classification model yielded an average testing AUC of 0.75. Conclusions Radiomic analysis of IUS images is feasible, and a radiomic-based classification model could accurately differentiate abnormal from normal images. Our findings establish methods to facilitate future radiomic-based IUS studies that can help standardize image interpretation and expand IUS research capabilities.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3