Examining the taxonomic distribution of tetracycline resistance in a wastewater plant

Author:

Ochman Howard1ORCID,Quandt Erik M1,Gottell Neil2,Gilbert Jack A2ORCID

Affiliation:

1. Department of Molecular Biosciences, University of Texas , Austin, TX 78712 , United States

2. Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego , La Jolla, CA 92093 , United States

Abstract

Abstract Microbial communities serve as reservoirs of antibiotic resistance genes (ARGs) and facilitate the dissemination of these genes to bacteria that infect humans. Relatively little is known about the taxonomic distribution of bacteria harboring ARGs in these reservoirs and the avenues of transmission due to the technical hurdles associated with characterizing the contents of complex microbial populations and the assignment of genes to particular genomes. Focusing on the array of tetracycline resistance (Tcr) genes in the primary and secondary phases of wastewater treatment, 17 of the 22 assayed Tcr genes were detected in at least one sample. We then applied emulsion, paired isolation, and concatenation PCR (epicPCR) to link tetracycline resistance genes to specific bacterial hosts. Whereas Tcr genes tend to vary in their distributions among bacterial taxa according to their modes of action, there were numerous instances in which a particular Tcr gene was associated with a host that was distantly related to all other bacteria bearing the same gene, including several hosts not previously identified. Tcr genes are far less host-restricted than previously assumed, indicating that complex microbial communities serve as settings where ARGs are spread among divergent bacterial phyla.

Funder

Bill and Melinda Gates Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3