Using patient-reported data from a smartphone app to capture and characterize real-time patient-reported flares in rheumatoid arthritis

Author:

Gandrup Julie1ORCID,Selby David A1,van der Veer Sabine N2ORCID,Mcbeth John1ORCID,Dixon William G13ORCID

Affiliation:

1. Centre for Epidemiology Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences

2. Centre for Health Informatics, Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester

3. Department of Rheumatology, Salford Royal NHS Foundation Trust, Salford, UK

Abstract

Abstract Objective We aimed to explore the frequency of self-reported flares and their association with preceding symptoms collected through a smartphone app by people with RA. Methods We used data from the Remote Monitoring of RA study, in which patients tracked their daily symptoms and weekly flares on an app. We summarized the number of self-reported flare weeks. For each week preceding a flare question, we calculated three summary features for daily symptoms: mean, variability and slope. Mixed effects logistic regression models quantified associations between flare weeks and symptom summary features. Pain was used as an example symptom for multivariate modelling. Results Twenty patients tracked their symptoms for a median of 81 days (interquartile range 80, 82). Fifteen of 20 participants reported at least one flare week, adding up to 54 flare weeks out of 198 participant weeks in total. Univariate mixed effects models showed that higher mean and steeper upward slopes in symptom scores in the week preceding the flare increased the likelihood of flare occurrence, but the association with variability was less strong. Multivariate modelling showed that for pain, mean scores and variability were associated with higher odds of flare, with odds ratios 1.83 (95% CI, 1.15, 2.97) and 3.12 (95% CI, 1.07, 9.13), respectively. Conclusion Our study suggests that patient-reported flares are common and are associated with higher daily RA symptom scores in the preceding week. Enabling patients to collect daily symptom data on their smartphones might, ultimately, facilitate prediction and more timely management of imminent flares.

Funder

Centre for Epidemiology Versus Arthritis

Publisher

Oxford University Press (OUP)

Subject

Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3