Comparative phylogenomics of ESBL-, AmpC- and carbapenemase-producing Klebsiella pneumoniae originating from companion animals and humans

Author:

Garcia-Fierro Raquel1ORCID,Drapeau Antoine1,Dazas Melody1,Saras Estelle1,Rodrigues Carla2ORCID,Brisse Sylvain2ORCID,Madec Jean-Yves1,Haenni Marisa1ORCID

Affiliation:

1. Unité Antibiorésistance et Virulence Bactériennes, Université Claude Bernard Lyon 1 - ANSES, Lyon, France

2. Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France

Abstract

Abstract Background WHO considers ESBL- and carbapenemase-producing Klebsiella pneumoniae a major global concern. In animals, ESBL- and carbapenemase-producing K. pneumoniae of human-related ST11, ST15 and ST307 have been reported, but not in the context of large WGS-based One Health investigations. Objectives To perform comparative phylogenomics on a large collection of multidrug-resistant (MDR) K. pneumoniae recovered from diseased companion animals and humans. Methods MDR K. pneumoniae (n = 105) recovered from companion animals in France during 2010–18 were phenotypically characterized. All isolates were whole-genome sequenced using the NovaSeq technology and phylogenomic analysis across animal and human K. pneumoniae was performed using appropriate pipelines. Results bla CTX-M-15, blaDHA-1 and blaOXA-48 were strongly associated with IncFIIk, IncR and IncL plasmids, respectively. When compared with human K. pneumoniae genomes, four groups of closely related French human and animal isolates belonging to ST11, ST15 and ST307 were detected, suggesting the circulation of clones between the human and animal sectors at country level. A large cluster of 31 ST11-KL105 animal isolates from France and Switzerland suggested it corresponds to a sub-lineage that is particularly well-adapted to the animal host. Conclusions This study demonstrates the spread of blaCTX-M-15-carrying ST15 and ST307, and blaDHA-1-carrying ST11 K. pneumoniae clones in animal populations. ST11 was the main vector of blaOXA-48/IncL, despite the absence of carbapenem use in French animals. Comparative phylogenomics suggests cross-transmission of K. pneumoniae sub-lineages more prone than others to colonize/infect the animal host. Our data also evidenced the emergence of convergent hypervirulent and MDR K. pneumoniae in animals.

Funder

ANSES

MedVetKlebs

EJP

European Union’s Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3