Suppression of classical nuclear import pathway by importazole and ivermectin inhibits rotavirus replication

Author:

Sarkar Rakesh1,Banerjee Shreya1,Halder Prolay2,Koley Hemanta2,Komoto Satoshi3,Chawla-Sarkar Mamta1ORCID

Affiliation:

1. Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases , P-33, C.I.T. Road, Scheme-XM, Beliaghata, 700010, Kolkata, West Bengal , India

2. Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases , Kolkata, West Bengal , India

3. Department of Virology and Parasitology, Fujita Health University School of Medicine , Aichi , Japan

Abstract

Abstract Background Rotavirus is the foremost cause of acute gastroenteritis among infants in resource-poor countries, causing severe morbidity and mortality. The currently available rotavirus vaccines are effective in reducing severity of the disease but not the infection rates, thus antivirals as an adjunct therapy are needed to reduce the morbidity in children. Viruses rely on host cellular machinery for nearly every step of the replication cycle. Therefore, targeting host factors that are indispensable for virus replication could be a promising strategy. Objectives To assess the therapeutic potential of ivermectin and importazole against rotaviruses. Methods Antirotaviral activity of importazole and ivermectin was measured against various rotavirus strains (RV-SA11, RV-Wa, RV-A5-13, RV-EW) in vitro and in vivo by quantifying viral protein expression by western blot, analysing viroplasm formation by confocal microscopy, and measuring virus yield by plaque assay. Results Importin-β1 and Ran were found to be induced during rotavirus infection. Knocking down importin-β1 severely impaired rotavirus replication, suggesting a critical role for importin-β1 in the rotavirus life cycle. In vitro studies revealed that treatment of ivermectin and importazole resulted in reduced synthesis of viral proteins, diminished production of infectious virus particles, and decrease in viroplasm-positive cells. Mechanistic study proved that both drugs perform antirotavirus activity by inhibiting the function of importin-β1. In vivo investigations in mice also confirmed the antirotavirus potential of importazole and ivermectin at non-toxic doses. Treatments of rotavirus-infected mice with either drug resulted in diminished shedding of viral particles in the stool sample, reduced expression of viral protein in the small intestine and restoration of damaged intestinal villi comapared to untreated infected mice. Conclusions The study highlights the potential of importazole and ivermectin as antirotavirus therapeutics.

Funder

Indian Council of Medical Research

ICMR

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3