Lipopeptide surfactin ameliorates the cell uptake of platensimycin and enhances its therapeutic effect on treatment of MRSA skin infection

Author:

Xiong Yi1,Kong Jieqian1,Yi Sirun1,Tan Qingwen1,Bai Enhe1,Ren Nan12,Huang Yong134,Duan Yanwen134,Zhu Xiangcheng134

Affiliation:

1. Xiangya International Academy of Translational Medicine at Central South University , Changsha, Hunan 410013 , China

2. Center for Infection Control, Xiangya Hospital, Central South University , Changsha, Hunan 410013 , China

3. Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery

4. National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery , Changsha, Hunan 410011 , China

Abstract

Abstract Objectives The rapid development of drug-resistant bacteria, especially MRSA, poses severe threats to global public health. Adoption of antibiotic adjuvants has proved to be one of the efficient ways to solve such a crisis. Platensimycin and surfactin were comprehensively studied to combat prevalent MRSA skin infection. Methods MICs of platensimycin, surfactin or their combinations were determined by resazurin assay, while the corresponding MBCs were determined by chequerboard assay. Growth inhibition curves and biofilm inhibition were determined by OD measurements. Membrane permeability analysis was conducted by propidium iodide staining, and morphological characterizations were performed by scanning electron microscopy. Finally, the therapeutic effects on MRSA skin infections were evaluated in scald-model mice. Results The in vitro assays indicated that surfactin could significantly improve the antibacterial performance of platensimycin against MRSA, especially the bactericidal activity. Subsequent mechanistic studies revealed that surfactin not only interfered with the biofilm formation of MRSA, but also disturbed their cell membranes to enhance membrane permeability, and therefore synergistically ameliorated MRSA cellular uptake of platensimycin. Further in vivo assessment validated the synergistic effect of surfactin on platensimycin and the resultant enhancement of therapeutical efficacy in MRSA skin-infected mice. Conclusions The combination of effective and biosafe surfactin and platensimycin could be a promising and efficient treatment for MRSA skin infection, which could provide a feasible solution to combat the major global health threats caused by MRSA.

Funder

National High Technology Research

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3