Loss of outer membrane protein A (OmpA) impairs the survival of Salmonella Typhimurium by inducing membrane damage in the presence of ceftazidime and meropenem

Author:

Chowdhury Atish Roy12,Mukherjee Debapriya12,Singh Ashish Kumar12,Chakravortty Dipshikha123

Affiliation:

1. Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore, Karnataka 560012 , India

2. Division of Biological Sciences, Indian Institute of Science , Bangalore, Karnataka 560012 , India

3. School of Biology, Indian Institute of Science Education and Research , Thiruvananthapuram, Kerala 695551 , India

Abstract

Abstract Objectives Salmonella enterica serovar Typhimurium is one of the significant non-typhoidal Salmonella serovars that causes gastroenteritis. The rapid development of antimicrobial resistance necessitates studying new antimicrobials and their therapeutic targets in this pathogen. Our study aimed to investigate the role of four prominent outer membrane porins of S. Typhimurium, namely OmpA, OmpC, OmpD and OmpF, in developing resistance against ceftazidime and meropenem. Methods The antibiotic-mediated inhibition of bacterial growth was determined by measuring the absorbance and the resazurin assay. DiBAC4 (Bis-(1,3-Dibutylbarbituric Acid)Trimethine Oxonol), 2,7-dichlorodihydrofluoroscein diacetate (DCFDA) and propidium iodide were used to determine the outer membrane depolarization, reactive oxygen species (ROS) generation and subsequent killing of Salmonella. The expression of oxidative stress-response and efflux pump genes was quantified by quantitative RT–qPCR. HPLC was done to determine the amount of antibiotics that entered the bacteria. The damage to the bacterial outer membrane was studied by confocal and atomic force microscopy. The in vivo efficacy of ceftazidime and meropenem were tested in the C57BL/6 mouse model. Results Deleting ompA reduced the survival of Salmonella in the presence of ceftazidime and meropenem. Massive outer membrane depolarization and reduced expression of oxidative stress-response genes in S. Typhimurium ΔompA hampered its growth in the presence of antibiotics. The enhanced uptake of antibiotics and decreased expression of efflux pump genes in S. Typhimurium ΔompA resulted in damage to the bacterial outer membrane. The clearance of the S. Typhimurium ΔompA from C57BL/6 mice with ceftazidime treatment proved the role of OmpA in rendering protection against β-lactam antibiotics. Conclusions OmpA protects S. Typhimurium from two broad-spectrum β-lactam antibiotics, ceftazidime and meropenem, by maintaining the stability of the outer membrane.

Funder

DAE SRC fellowship

ICMR

MHRD

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3