Affinity of cefotiam for the alternative penicillin binding protein PBP3SAL used by Salmonella inside host eukaryotic cells

Author:

Cestero Juan J1,Castanheira Sónia1,González Henar1,Zaragoza Óscar2,García-del Portillo Francisco1ORCID

Affiliation:

1. Laboratory of Intracellular Bacterial Pathogens, National Center for Biotechnology (CNB-CSIC) , Madrid , Spain

2. Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III , Madrid , Spain

Abstract

Abstract Background Following the invasion of eukaryotic cells, Salmonella enterica serovar Typhimurium replaces PBP2/PBP3, main targets of β-lactam antibiotics, with PBP2SAL/PBP3SAL, two homologue peptidoglycan synthases absent in Escherichia coli. PBP3SAL promotes pathogen cell division in acidic environments independently of PBP3 and shows low affinity for β-lactams that bind to PBP3 such as aztreonam, cefepime, cefotaxime, ceftazidime, ceftriaxone, cefuroxime and cefalotin. Objectives To find compounds with high affinity for PBP3SAL to control Salmonella intracellular infections. Methods An S. Typhimurium ΔPBP3 mutant that divides using PBP3SAL and its parental wild-type strain, were exposed to a library of 1520 approved drugs in acidified (pH 4.6) nutrient-rich LB medium. Changes in optical density associated with cell filamentation, a read-out of blockage in cell division, were monitored. Compounds causing filamentation in the ΔPBP3 mutant but not in wild-type strain—the latter strain expressing both PBP3 and PBP3SAL in LB pH 4.6—were selected for further study. The bactericidal effect due to PBP3SAL inhibition was evaluated in vitro using a bacterial infection model of cultured fibroblasts. Results The cephalosporin cefotiam exhibited higher affinity for PBP3SAL than for PBP3 in bacteria growing in acidified LB pH 4.6 medium. Cefotiam also proved to be effective against intracellular Salmonella in a PBP3SAL-dependent manner. Conversely, cefuroxime, which has higher affinity for PBP3, showed decreased effectiveness in killing intracellular Salmonella. Conclusions Antibiotics with affinity for PBP3SAL, like the cephalosporin cefotiam, have therapeutic value for treating Salmonella intracellular infections.

Funder

Spanish Ministry of Science and Innovation

Next Generation European Union EU/PRTR Program,

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3