Transverse endoplasmic reticulum expansion in hereditary spastic paraplegia corticospinal axons

Author:

Zhu Peng-Peng1,Hung Hui-Fang123,Batchenkova Natalia1,Nixon-Abell Jonathon145,Henderson James5,Zheng Pengli123,Renvoisé Benoit1,Pang Song4,Xu C Shan4,Saalfeld Stephan4,Funke Jan4,Xie Yuxiang6,Svara Fabian78,Hess Harald F4,Blackstone Craig123ORCID

Affiliation:

1. Neurogenetics Branch , National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA

2. MassGeneral Institute for Neurodegenerative Disease , Charlestown, MA 02129, USA

3. Department of Neurology , Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA

4. Howard Hughes Medical Institute , Janelia Research Campus, Ashburn, VA 20147, USA

5. Cambridge Institute for Medical Research , Cambridge CB2 0XY, UK

6. Synaptic Function Section , National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA

7. ariadne.ai ag , CH-6033 Buchrain, Switzerland

8. Research Center Caesar , D-53175 Bonn, Germany

Abstract

Abstract Hereditary spastic paraplegias (HSPs) comprise a large group of inherited neurologic disorders affecting the longest corticospinal axons (SPG1–86 plus others), with shared manifestations of lower extremity spasticity and gait impairment. Common autosomal dominant HSPs are caused by mutations in genes encoding the microtubule-severing ATPase spastin (SPAST; SPG4), the membrane-bound GTPase atlastin-1 (ATL1; SPG3A) and the reticulon-like, microtubule-binding protein REEP1 (REEP1; SPG31). These proteins bind one another and function in shaping the tubular endoplasmic reticulum (ER) network. Typically, mouse models of HSPs have mild, later onset phenotypes, possibly reflecting far shorter lengths of their corticospinal axons relative to humans. Here, we have generated a robust, double mutant mouse model of HSP in which atlastin-1 is genetically modified with a K80A knock-in (KI) missense change that abolishes its GTPase activity, whereas its binding partner Reep1 is knocked out. Atl1KI/KI/Reep1−/− mice exhibit early onset and rapidly progressive declines in several motor function tests. Also, ER in mutant corticospinal axons dramatically expands transversely and periodically in a mutation dosage-dependent manner to create a ladder-like appearance, on the basis of reconstructions of focused ion beam-scanning electron microscopy datasets using machine learning-based auto-segmentation. In lockstep with changes in ER morphology, axonal mitochondria are fragmented and proportions of hypophosphorylated neurofilament H and M subunits are dramatically increased in Atl1KI/KI/Reep1−/− spinal cord. Co-occurrence of these findings links ER morphology changes to alterations in mitochondrial morphology and cytoskeletal organization. Atl1KI/KI/Reep1−/− mice represent an early onset rodent HSP model with robust behavioral and cellular readouts for testing novel therapies.

Funder

Howard Hughes Medical Institute

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3