Genetic risk of osteoarthritis operates during human skeletogenesis

Author:

Rice Sarah J1,Brumwell Abby1,Falk Julia1,Kehayova Yulia S1,Casement John2,Parker Eleanor1,Hofer Ines M J1,Shepherd Colin1,Loughlin John1ORCID

Affiliation:

1. Biosciences Institute , International Centre for Life, Newcastle University, Newcastle upon Tyne, NE1 3BZ , UK

2. Bioinformatics Support Unit , Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH , UK

Abstract

Abstract Osteoarthritis (OA) is a polygenic disease of older people resulting in the breakdown of cartilage within articular joints. Although a leading cause of disability, there are no disease-modifying therapies. Evidence is emerging to support the origins of OA in skeletogenesis. Whilst methylation QTLs (mQTLs) co-localizing with OA GWAS signals have been identified in aged human cartilage and used to identify effector genes and variants, such analyses have never been conducted during human development. Here, for the first time, we have investigated the developmental origins of OA genetic risk at seven well-characterized OA risk loci, comprising 39 OA-mQTL CpGs, in human foetal limb (FL) and cartilage (FC) tissues using a range of molecular genetic techniques. We compared our results to aged cartilage samples (AC) and identified significant OA-mQTLs at 14 CpGs and 29 CpGs in FL and FC tissues, respectively. Differential methylation was observed at 26 sites between foetal and aged cartilage, with the majority becoming actively hypermethylated in old age. Notably, 6/9 OA effector genes showed allelic expression imbalances during foetal development. Finally, we conducted ATAC-sequencing in cartilage from the developing and aged hip and knee to identify accessible chromatin regions, and found enrichment for transcription factor binding motifs including SOX9 and FOS/JUN. For the first time, we have demonstrated the activity of OA-mQTLs and expression imbalance of OA effector genes during skeletogenesis. We show striking differences in the spatiotemporal function of these loci, contributing to our understanding of OA aetiology, with implications for the timing and strategy of pharmacological interventions.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3