MATS: a novel multi-ancestry transcriptome-wide association study to account for heterogeneity in the effects of cis-regulated gene expression on complex traits

Author:

Knutson Katherine A1,Pan Wei1ORCID

Affiliation:

1. University of Minnesota Division of Biostatistics, , Minneapolis, MN , USA

Abstract

Abstract The Transcriptome-Wide Association Study (TWAS) is a widely used approach which integrates gene expression and Genome Wide Association Study (GWAS) data to study the role of cis-regulated gene expression (GEx) in complex traits. However, the genetic architecture of GEx varies across populations, and recent findings point to possible ancestral heterogeneity in the effects of GEx on complex traits, which may be amplified in TWAS by modeling GEx as a function of cis-eQTLs. Here, we present a novel extension to TWAS to account for heterogeneity in the effects of cis-regulated GEx which are correlated with ancestry. Our proposed Multi-Ancestry TwaS (MATS) framework jointly analyzes samples from multiple populations and distinguishes between shared, ancestry-specific and/or subject-specific expression-trait associations. As such, MATS amplifies power to detect shared GEx associations over ancestry-stratified TWAS through increased sample sizes, and facilitates the detection of genes with subgroup-specific associations which may be masked by standard TWAS. Our simulations highlight the improved Type-I error conservation and power of MATS compared with competing approaches. Our real data applications to Alzheimer’s disease (AD) case–control genotypes from the Alzheimer’s Disease Sequencing Project (ADSP) and continuous phenotypes from the UK Biobank (UKBB) identify a number of unique gene-trait associations which were not discovered through standard and/or ancestry-stratified TWAS. Ultimately, these findings promote MATS as a powerful method for detecting and estimating significant gene expression effects on complex traits within multi-ancestry cohorts and corroborates the mounting evidence for inter-population heterogeneity in gene–trait associations.

Funder

Minnesota Supercomputing Institute at the University of Minnesota

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

Reference56 articles.

1. Genetic analyses of diverse populations improves discovery for complex traits;Wojcik;Nature,2019

2. Gene-expression variation within and among human populations;Storey;Am. J. Hum. Genet.,2007

3. Common genetic variants account for differences in gene expression among ethnic groups;Spielman;Nat. Genet.,2007

4. Evaluation of genetic variation contributing to differences in gene expression between populations;Zhang;Am. J. Hum. Genet.,2008

5. Population genomics of human gene expression;Montgomery;Nat. Genet.,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3