Protein kinase CK2 modulates the activity of Maf-family bZIP transcription factor NRL in rod photoreceptors of mammalian retina

Author:

Liang Xulong1,Yadav Sharda P1,Batz Zachary A1,Nellissery Jacob1,Swaroop Anand1

Affiliation:

1. Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610 , Bethesda, MD 20892, USA

Abstract

AbstractMaf-family basic motif leucine zipper protein NRL specifies rod photoreceptor cell fate during retinal development and, in concert with homeodomain protein CRX and other regulatory factors, controls the expression of most rod-expressed genes including the visual pigment gene Rhodopsin (Rho). Transcriptional regulatory activity of NRL is modulated by post-translational modifications, especially phosphorylation, and mutations at specific phosphosites can lead to retinal degeneration. During our studies to elucidate NRL-mediated transcriptional regulation, we identified protein kinase CK2 in NRL-enriched complexes bound to Rho promoter-enhancer regions and in NRL-enriched high molecular mass fractions from the bovine retina. The presence of CK2 in NRL complexes was confirmed by co-immunoprecipitation from developing and adult mouse retinal extracts. In vitro kinase assay and bioinformatic analysis indicated phosphorylation of NRL at Ser117 residue by CK2. Co-transfection of Csnk2a1 cDNA encoding murine CK2 with human NRL and CRX reduced the bovine Rho promoter-driven luciferase expression in HEK293 cells and mutagenesis of NRL-Ser117 residue to Ala restored the reporter gene activity. In concordance, overexpression of CK2 in the mouse retina in vivo by electroporation resulted in reduction of Rho promoter-driven DsRed reporter expression as well as the transcript level of many phototransduction genes. Thus, our studies demonstrate that CK2 can phosphorylate Ser117 of NRL. Modulation of NRL activity by CK2 suggests intricate interdependence of transcriptional and signaling pathways in maintaining rod homeostasis.

Funder

National Eye Institute

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3